Model Gallery

La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Loudspeaker Driver in a Vented Enclosure

This example models the acoustic behavior of a woofer mounted in a bass reflex enclosure and placed in the corner of a room. One of the most important design parameters for a loudspeaker driver is its sensitivity as a function of the frequency. To isolate the driver’s performance from that of the environment it usually operates in, the driver is often set in an infinite baffle. This model, ...

Generic 711 Coupler: An Occluded Ear-Canal Simulator

This is the model of an occluded ear canal simulator (a generic 711 coupler). Besides certain details the geometry corresponds to the Brüel & Kjær Ear Simulator Type 4157. The real life couplers are used for simulating the acoustics of a standardized human ear canal and can be used for measurements on all sorts of devices. They are widely used in the hearing aid industry but also as ear ...

Focused Ultrasound Induced Heating in Tissue Phantom

This model example shows how to model tissue heating induced by focused ultrasound. First, the stationary acoustic field in the water and the tissue are modeled to obtain the acoustic intensity distribution in the tissue. The absorbed acoustic energy is then calculated and used as the heat source for a Bioheat Transfer physics in the tissue domain in a time-dependent study simulating the ...

Acoustic Reflections off a Water-Sediment Interface

This model determines the reflection coefficient of plane acoustic waves, at different frequencies and at different angles of incidence, off a water-sediment interface. The ability of the Poroelasitc Waves interface to model the coupled acoustic and elastic wave in any porous substance (Biot's theory) is used to describe the water-sediment system. The model results are in good agreement with ...

Test Bench Car Interior

Sound is generated by a point source located in the wall of this test bench car interior. The sound pressure level response at a point of measurement is investigated for a range of frequencies and four different mesh resolutions. The model is first solved with the default direct solvers. Finally, it is shown how to set up an iterative solver which is efficient for large problems and the finest ...

Hollow Cylinder

Fluid acoustics coupled to structural objects, such as membranes or plates, represents an important application area in many engineering fields. Some examples are: • Loudspeakers • Acoustic sensors • Nondestructive impedance testing • Medical ultrasound diagnostics This model provides a general demonstration of an acoustic fluid phenomenon in 3D coupled to a solid object. In ...

Sonic Well Logging

This model demonstrates how to simulate a piezoelectric transducer as both a sound transmitter and a receiver in a well logging setup. Other applications of this setup are, for example, in the field of nondestructive testing. A transmitting transducer is connected to an electrical circuit which is set up to send out a pulse as a detecting signal and also pick up the signals that come back to the ...

Nonlinear Acoustics: Modeling of 1D Westervelt Equation

This model example shows how to model nonlinear propagation of 1D finite-amplitude Acoustic waves in fluids using Acoustics Module of COMSOL Multiphysics. The model is based on the 2nd order Westervelt equation. The one dimensional nonlinear wave equation is solved in the time domain by adding the nonlinear term to the linear equation. The model does not include energy dissipation in order ...

Porous Absorber

This is a model of acoustic absorption by a porous acoustic open cell foam. In porous materials the sound propagates in a network of small interconnected pores. Because the dimensions of the pores are small, losses occur due to thermal conduction and viscous friction. Acoustic foams are used to sound proof rooms and ducts as well as to treat reverberation problems in rooms. The aim of the ...

Flow Duct

The modeling of aircraft-engine noise is a central problem in the field of computational aeroacoustics. The acoustic field in a model of an axially symmetric aero-engine duct, generated by a noise source at the boundary, is computed and visualized. Results are presented for situations with as well as without a compressible irrotational background flow and for the cases of hard and lined duct ...

Quick Search