Model Gallery

La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Copper Deposition in a Trench

This model demonstrates the use of moving meshes in the application of copper electrodeposition on circuit boards. In these environments, the presence of cavities or 'trenches' are apparent. The model makes use of the Tertiary, Nernst-Planck interface for electrodeposition to keep track of the deformation of the mesh. Furthermore, electrochemical reaction kinetics through use of the ...

Decorative Plating

Tutorial model of electroplating. The model uses secondary current distribution with full Butler-Volmer kinetics for both anode and cathode. The thickness of the deposited layer at the cathode is computed as well as the pattern caused by dissolution of the anode surface.

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) is a common technique in which a small oscillating perturbation in cell potential is applied to an electrochemical system so as to interrogate the kinetic and transport properties. The Electroanalysis interface is used with a frequency domain study to simulate EIS for a range of electrode reaction rates. Nyquist and Bode plots illustrate the transition ...

Cyclic Voltammetry at an Electrode

Cyclic voltammetry is a common analytical electrochemical technique, where the potential at a working electrode is swept over a range and back again while the current is recorded. The current-voltage waveform, referred to as a voltammogram, provides information about the reactivity and mass transport properties of an electrolyte. For large electrodes, the model is simplified to a 1D geometry by ...

Electrodeposition of an Inductor Coil

This example models the deposition of an inductor coil in 3D. The geometry includes the extrusion of the deposition pattern into an isolating photoresist mask, and a diffusion layer on top of the photoresist. The mass transfer of copper ions in the electrolyte has a major impact on the deposition kinetics, resulting in higher deposition rates in the outer parts of the deposition pattern. The ...

Multiphysics Simulation of the Electrochemical Finishing of Micro Bores

For several high-precision applications, especially in hydraulic systems and fuel injectors, micro bores are needed. In most cases the shape of the injection hole, especially the edge rounding, has a significant influence on the atomization of fluids and therefore on the combustion process. Usually these micro bores are machined by electrical discharge machining (EDM). Due to the process ...

Superfilling Electrodeposition

This example illustrates the concept of superfilling in electrodeposition. The deposition rate is accelerated in concave areas of the surface, where the concentration of a surface catalyst is increased due to the area contraction of the moving boundary.

Electrodeposition of a Microconnector Bump

This model demonstrates the impact of convection and diffusion on the transport-limited electrodeposition of a copper microconnector bump (metal post). Microconnector bumps are used in various types of electronic applications for interconnecting components, for instance liquid crystal displays (LCDs) and driver chips. The location of the bumps on the electrode surface is controlled by the use ...

Rotating Cylinder Hull Cell

Rotating Cylinder hull cells are an important experimental tool in electroplating and electrodeposition and are used for the measurement of non-uniform current distribution, mass transport and throwing power of plating baths. The model reproduces the results for a commercially available cell (RotaHull(R)) as published in paper [1]. In particular, it investigates the primary, secondary and ...

Electrode Growth Next to an Insulator

This example shows how to model secondary current distribution and electrode growth with a moving geometry. To avoid numerical instabilities, a seed layer is introduced in the initial geometry to obtain a right angle at the edge between the growing electrode and the insulator.

Quick Search

1 - 10 of 15 First | < Previous | Next > | Last