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Abstract: Petroleum reservoir simulation is a 
process of modeling the complex physical 
phenomena inside a reservoir. The goal is to 
determine how hydrocarbons and water behave 
and how local reservoir characteristics affect the 
oil and gas recovery in the reservoir. This study 
presents an application of two rigorous analytical 
based numerical schemes, so called the 
Boundary Element Method (BEM) and its hybrid 
form, the Dual Reciprocity Boundary Element 
Method (DRBEM). They are proven to be able 
to provide a computationally efficient means of 
handling single and multi-phase flow in a 
homogeneous medium. The accuracy can be 
further enhanced by incorporating singularity 
programming and Laplace Transformation (LT) 
techniques; hence an alleviation of numerical 
errors caused by singularities and a time 
derivative is achieved. It is observed that these 
two methods can be an alternative tool to analyze 
pressure transient performance in both single and 
multiphase flow, which plays a key role in 
enhanced oil recovery processes. 
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1. Introduction 
 

In the oil industry reservoir simulation is the 
study of how fluids flow and behave in a 
reservoir under different conditions. It consists 
of the conceptual model which describes the 
relevant physical process verbally; a 
mathematical model which usually involves 
coupled or decoupled systems of nonlinear 
partial differential equation describing the 
process quantitatively, and the numerical model 
especially with the advent of fast computers and 
due to the limitations and assumptions made 
through an analytical approach. Reservoir 
simulators can estimate production 
characteristics, calibrate reservoir parameters; 
visualize reservoir flow patterns, hence they are 
widely used to aid the planning and 
implementation of enhanced oil recovery 

strategies. Advanced drilling techniques and 
enhanced seismic and geological characterization 
of reservoirs have emerged and has resulted in 
more accurate geological information [1]. 
Consequently, there is a substantial research 
activity that aims toward faster, more robust, and 
more accurate reservoir simulators [2, 3, and 4]. 
In this work we seek accurate numerical schemes 
combined with suitable mathematical models for 
the reservoir.    

For single phase flow, the BEM has been an 
established tool for reservoir characterization 
through pressure transient analysis due to its 
rigorous analytical base of Green’s function. It 
was indicated that the domain methods suffer 
from numerical dispersion and grid orientation 
effects due to the domain discretization [5]. 
Several attempts to alleviate the aforementioned 
problems have been reported. Examples are the 
flux limiter method [6], and the total variation 
diminishing mid-point scheme [7, 8]. Another 
shortcoming of the domain discretization lies in 
the well treatment because the flowing bottom-
hole-pressure of a well is usually related to the 
pressure calculated for that particular grid block 
containing the well through well models. None 
of the applicable models can eliminate the steady 
state/pseudo steady state.  One example is the 
popular Well Index approach [9]. On the 
contrary, the BEM can overcome the numerical 
dispersion and grid orientation effects introduced 
by domain discretization and remove the 
prominent assumptions for well treatment [10] 
because of the boundary-only discretization 
nature. The BEM was first introduced into 
petroleum engineering problems in 1973 [11] 
which demonstrated the power of Green’s 
functions in relation to a solution for well testing 
problems. The success of this approach attracts 
many researchers who try to pursue boundary 
element solutions with respect to general well 
testing problems since this approach is able to 
deal with arbitrary boundary shapes and more 
flexible conditions through the discretization of 
the boundary. In petroleum engineering, its 
applicability covers a wide range including 



homogeneous and sectional homogeneous 
reservoir as well as the moving boundary 
problem [12, 13, and 14]. An earlier form of the 
BEM for a diffusivity equation employing a 
Laplace transformation (LT) had the main 
advantage of transforming the parabolic equation 
into an elliptic type which is readily amenable to 
the BEM [15]. Researchers have considered 
random heterogeneities as in the analysis of flow 
problems in heterogeneous media [15, 16].  

Multiphase flow problem is still under 
development. It is well known that solutions of 
hyperbolic conservation law in terms of 
saturation equation can develop discontinuities, 
even for smooth initial data [17]. An alternative 
approach is to consider a modified version of the 
two-phase flow equations by adding small 
capillary pressure [18]. The tradeoff is that sharp 
saturation fronts might be artificially smeared 
due to the added viscosity. In addition, we apply 
pressure only formulation to avoid solving 
hyperbolic saturation equation directly.  
 
2. Reservoir Models 
 

In this section, we present the principle of 
conservation law, continuity and Darcy’s law; 
briefly give the primary physical and geological 
parameters influencing fluid flow in porous 
media. With this we provide mathematical 
models for immiscible single-phase and multi-
phase flow, assuming some common 
simplifications.  

The conservation law in differential form is 
given as:                                          
( ) / ( )t v qρφ ρ∂ ∂ +∇ ⋅ =                           (1)            (1)   

where v is the volumetric velocity, ρ is the 
density, t is the time and q corresponds to 
source or sink terms. The continuity equation 
represents conservation of mass for fluid flow. 
For an incompressible fluid, the continuity 
equation can be derived from Eq. 1 as follows:               

0v∆ ⋅ =                                                             (2)                                 
Darcy’s law describes the single phase flow of a 
fluid through a porous medium, and given as:  

( / )v k pµ= − ∇                                                  (3)  

where k is the permeability, µ is the viscosity 
and p is the pressure. 
  
2.1 A Single Phase Homogenous Model 
 

The mathematical expression for the 
unsteady state flow of a single-phase slightly 
compressible fluid in an isotropic porous media 
can be written as: 

2 ( / )( / ) ( / )tp c k p t q kφ µ ρ∇ = ∂ ∂ +     (4) 
It is a common approach to work with 

dimensionless-quantities in order to keep values 
even if the scale or the properties of a well and 
reservoir are changed, or if the unit system 
changes. The following dimensionless variables 
are introduced: 
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where A is the area, 
ref
p is the reference 

pressure. Then, Eq. 4 becomes: 

2

1

/ ( ) ( )
wn

D D D Dl D Dl D Dl
l

p p t q x x y yδ δ
=

∇ = ∂ ∂ + − −∑   

(6)          
where

 0( )z zδ − is the Dirac-Delta function used 

to clarify the locations of wn sinks and sources, 

and s is Laplace parameter. Applying Laplace 
Transformation to Eq. 5: 
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2.2 Two–Phase Immiscible Flow Model 
 

Conservation must be posed for both phases. 
In addition, we have phase pressures that 
typically are related through a quantity called the 
capillary pressure. The capillary pressure reflects 
the fact that the pressures at each side of a fluid-
fluid interface differ due to interfacial tension. 
The conservation of mass for each phase is: 
( ) / ( )i i i i is t v qρ φ ρ∂ ∂ +∇ ⋅ =                         (8)             

where is  is the saturation of phase i . Each phase 

may have distinct sources iq and the volumetric 
flow velocity for each fluid is given by a 
generalized Darcy’s law for multi-phase flow: 

i i iv K pλ= − ∇                                       (9)                

where ip is the pressure of fluid phase i . The 

relative mobility iλ of phase i is defined by: 

/i ri ikλ µ=                                         (10)                                       



A fully coupled model can be derived by 
substituting Eq. 9 and 10 into Eq. 8: 
( ) / ( / ) 0w w w rw w w ws t k K p qφ ρ ρ µ∂ ∂ −∇⋅ ∇ − = (11)          

( ) / ( / ) 0n n n rn n n ns t k K p qφ ρ ρ µ∂ ∂ −∇ ⋅ ∇ − =  (12)           (15) 
The following relations are needed: 

1w ns s+ =                     (13) 

( ), / 1n w c w c wp p p s p p− = ∂ ∂ = −      (14) 

/ / / /w w c c w ws t s p p p p t∂ ∂ = ∂ ∂ ×∂ ∂ ×∂ ∂   (15) 
If we assume fluid density, viscosity and 
absolute permeability are constant, substituting 
Eq. 13–15, and Eq. 11 becomes: 

2( / )( / ) /
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Similar formulation can be applied to Eq. 16: 
2( / )( / ) /

/ 0
w c n ro o n
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In this model, gravity has been neglected. 
                                                            
3. Methodology  
 

In this section, the BEM for the initial- and 
boundary-value problem presented in the 
previous section are set up. The expansion of the 
solution over all boundaries and the 
discretization over boundary surfaces and time 
are implemented. 

 
3.1 The BEM Formulation for Single Phase 
 

 In a reservoir system with uniform initial 
pressure, we can obtain the solution of the 2D 
unsteady state flow problem in Laplace space 
from Eq. 7, which is associated with the 
modified Helmholtz 2( )s∇ − operator: 

0( , ; , ; ) 1 / 2 ( )D D DG x y s K r sζ η π= −             (18)   

where Dr is the distance between the field point 
and the source point: 

2 2( ) ( )D D Dr x yζ η= − + −                          (19) 

Casting Eq. 7 into divergence form, integrating 
over the domain of the problem, using the 
shifting property of the Dirac delta function and  
the divergence theorem of Gauss, we obtain: 
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Matrix equations are generated by substituting in 
Eq. 20 the space interpolation functions: 

1
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=
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The detailed derivation and expression of each 
term in Eq. 21 can be found in [15]. 
 
3.2 The DRBEM Formulation for Two-Phase 
Flow 

In solving the Eq. 16 and 17 using the 
boundary element formulation, fundamental 
solution to the Laplace equation was applied, the 
domain integrals generated by the time and space 
derivatives are approximated using the dual 
reciprocity method, and then Green’s theorem is 
applied to get a boundary solution. This 
procedure gives a boundary only solution with 
less complexity in the solution process and 
allows any of the coefficients to have variable 
values without adopting special techniques. Take 
Eq. 16 for the pressure in the wetting phase as an 
example, for simplicity, it can be expressed as 

2
wp b∇ =                                                        (22) 

where 
( / )( / )( / )

/
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b Kk s p p t
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−∇ ∇            (23)                   

After the DRBEM formulation, Eq. 23 can be 
expressed in discretized form as:
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(24) 
where / 2ig θ π= , θ is the internal angle 
between two boundary elements. N is the 
number of nodes on the boundary and L is the 
number of internal nodes which do not require 
any associated internal gridding. n is the unit 
vector normal to the boundary of the 

domainΩ .
*
wp is the fundamental solution of the 

Laplace equation and wp is a particular solution.  
 
3.3 Matrix Formulation and Assembly of 
Equations 
 

After application of collocation technique to 
all boundary and internal nodes, Eq. 24 can be 
written in terms of four matrices which depend 
only on the geometry of the problem: 



( )w w w wHp Gq Hp Gq α− = −% %                           (25) 

where /w wq dp dn= , and /w wq dp dn=% % , 

wp% and wq% are known once the approximation 

function f is defined. Also in the DRBEM: 
b Fα=                                                          (26) 
The dual reciprocity method formulation for 

wp is obtained after replacing the non-
homogeneous term in Eq. 26 with Eq. 25: 
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where ijs is the matrix
1( )w wHp Gq F −−% % , 

rwjk% and /wj cs p∂ ∂% are calculated using values of 
,w op p from the previous iteration, which will be 

denoted by ,w op p% %  from here on. 
/wjp x∂ ∂ is obtained by applying the DRM 

approximation and similar for /wjp y∂ ∂ : 

1

1 1

/ ( / )
n n

wj jl lk wk
k l

p x f x f p−

= =

∂ ∂ = ∂ ∂∑∑                  (28) 

The time discretization is based on the 
implicit/explicit Euler method: 

1(1 ) m m
w u w u wp p pθ θ += − +                                (29) 

1(1 ) m m
w q w q wq q qθ θ += − +                                  (30) 

The time derivative is approximated using a 
finite difference scheme: 

1/ (1/ )( )m m
w w wp t t p p+∂ ∂ = ∆ −                          (31) 

By applying Eq. 28 – 31, Eq. 27 can be recast as: 
1 1( / ) {( 1)m m

u w u w w q w uH R t T p Gqθ θ θ θ+ ++ ∆ + − = −% %  

( ) / } (1 )m m
w w w q wH T R t p Gqθ+ + ∆ + −% %               (32) 

where wR%  is a matrix of components 

( / )( / )wij ij w rwj wj cr s Kk s pφµ= ∂ ∂%% %                      (33) 

wT% is defined as  
1 1( / ) ( / )w x yT D F x F D F y F− −= ∂ ∂ + ∂ ∂% % %            

(34) 

where xD% has components: 

(1/ )( / )ij ij rwj rwjd s k k x= ∂ ∂% %                               (35) 

and similar for yD% . 
In this approach, the formulated systems of 

governing equations are only partial pressure 

involved. Therefore, saturation can be directly 
calculated through a pre-set capillary pressure 
model. 
 
3.4 Capillary Pressure Model 
 

 There are several functions that have been 
proposed to describe the relationship between the 
capillary pressure and saturation; among the 
most popular are those given by Leverett [18], 
Brooks and Corey [19] and van Genuchten [20]. 
The limitation of the VG model is that it does not 
consider the entry pressure which is especially 
important for heterogeneous porous medium.  
But it has the advantage that its derivatives are 
continuous, and usually expressed as:  

1/ 1/( ) (1/ )( 1)m n
c w ewp s sα= −                          (40) 

α , m  and n  are model parameters. The 
effective wetting saturation is given by: 

( ) / (1 )ew w wr wr ors s s s s= − − −                       (41) 
The BC model is defined as: 

1/
c d ewp p s λ−=                                                  (42) 

 
3.5 Relative Permeability Model 
 

The relative permeability curve is also a 
function of saturation and defined in van 
Genuchten model as: 

11/2 / 2(1 (1 ) )m m
rw ew ewk s s= − −                                    (43) 

1/ 2 1/ 2(1 ) (1 )m m
ro ew ewk s s= − −                                  (44) 

 The BC model defines the relative 
permeability curve as the follows: 

(2 3 )/
rw wk s λ λ+=                                                   (45) 

2 (2 ) /(1 ) (1 )ro w wk s s λ λ+= − −                               (46) 
  
3.6 Well Treatment 
 

Sources and sinks with diminishing radii are 
examples of singularities which can be addressed 
in two different ways. Being Dirac-delta 
functions for line source conditions, they only 
appear as additive in-homogeneous term in the 
flow equation. More precisely, this scheme 
defines the well as a source /sinks term. Another 
way to address the singularities is to use 
singularity programming. This approach lets us 
achieve the separation of well singularities and 
non-singular solutions. It was proven that 
singularity programming was a useful tool when 



applied in conjunction with the boundary 
element method [15, 16]. 

 
4. Numerical Results  

 
4.1 Validation 
 
Case 1: A vertical well at the center of a closed 
rectangular reservoir 
 

The value of using singularity programming 
in combination with the BEM can be 
demonstrated by comparing simulated well test 
results to the available analytical solutions for a 
vertical well centered at a closed rectangular 
reservoir. We validate our model by simulating 
the pressure behavior of a vertical well in a 
process of drawdown.  

 Table 1 lists he reservoir rock and fluid 
properties used in this example. Fig. 1 proves the 
excellent agreement of our BEM model and its 
analytical solution. 
 
Table 1. Rock and fluid properties for case 1 

Parameters Value 
Reservoir geometry 3900 900 15m× ×

 
Porosity 0.3  
Viscosity 0.001Pa s⋅  

Permeability 21. 10E m−  
Compressibility 11.0 2E Pa−−  
Wellbore radius 0.2m  
Production rate 31.5 m / d  

 
 

 
 

Figure 1. Drawdown pressure responses of case 1 

 
In this section, we present an application of 

the BEM and the FASM method to multiphase 

flow in a porous medium. The reservoir 
simulation models developed in this study is 
applicable to various inner and outer boundary 
conditions, including no-flow boundaries and 
constant pressure boundaries.  
 
Case 2: A mixed boundary problem 
 

In this example, we construct a Cartesian 
grid of size 20 20 1× × cells to deal with the 
sink/source term instead of singularity 
programming. The left hand side of the reservoir 
boundary is Dirichlet type of 10p bar= and the 
other sides are no–flow boundary. The fluid and 
rock properties are listed in Table 2. 
 
Table 2. Rock and fluid properties for case 3 

 
Parameters Value 
Reservoir 

geometry 
32000 2000 30m× ×

 
Porosity 0.3  
Viscosity 0.001Pa s⋅  

Permeability 21. 10E m−  
Wellbore radius 0.1m  
Production rate 32.5 /m d  

 
We plot the computation results for pressure 

change and production performance in Fig. 2–3. 
The results show the flexibility of the BEM to 
varied boundary types as well as multiple 
approaches to the sink/source terms. 

 
Figure 2. Pressure profile of case 2 by BEM 
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Figure 3. Pressure profile of case 2 by Comsol 
 
4.2 Application 
 
Case 3: Inverted five-spot waterflooding 
 

We confine our attention to a two–
dimensional, two–phase waterflooding problem 
through the DRBEM approach verified in the 
previous section. It is a quarter of inverted five-
spot pattern where water is injected in an oil 
reservoir from the lower left and oil is produced 
from the upper right as shown in Fig. 4.  We 
express the physical problem by taking the 
following values of the parameters from Table 3. 

 

 
 

Figure 4. Reservoir geometry and discretization 
scheme for case 3 
 
Table 3. Reservoir rock and fluid property for case 3 
 

 
 

The boundaries of the domain are taken as 
no–flow boundaries. Injector operates under rate 
control, and producer is under pressure control. 
The reservoir is filled with oil initially, and the 
pressure variable does not require an initial 
condition due to the elliptic nature of the 
equation. The boundary is discretized into a 
fairly coarse of 160 elements, and the domain is 
divided into 160 sub-regions to increase the 
stability and accuracy which may be affected by 
the traditional single domain DRBEM in case of 
large velocity. In Fig. 5 we show the pressure 
profile computed for both oil and water phase at 

the injector. And Fig. 6 shows the rate profile 
calculated at the producer.  Fig. 7 gives the 
saturation profile at time t=100 and 300days 
computed from our DRBEM algorithm and Fig. 
8 is the simulation result from Comsol. 

 

 

Figure 5. Injector Oil and water pressure profile  

 

 
 

Figure 6. One of the four producers production profile 
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Figure 7. Water saturation profile at time t=100, and 
300 days 
 

                            
 
Figure 8. Water saturation profile at time t=100, and 
300 days by Comsol 
 
5. Conclusions 
 

The analytical based numerical models 
developed in this study can accurately predict 
performance of vertical wells under single phase 
and oil-water two-phase flow conditions. Firstly, 
the advantage of LT is that time appears as a 
parameter in the Laplace formula which reduce 
the computation cost by convolution. The 
disadvantage is that the kernel (Green’s) function 



becomes more complicated and the majority of 
the integrals arising from the boundary 
discretization must be taken care of numerically. 
Secondly, the BEM in conjunction with 
singularity programming increased the accuracy 
of the more sensitive pressure derivative result. 
Thirdly, for the transport equation, the DRBEM 
was combined successfully with method of 
fundamental solution for convective terms. 
Fourthly, more accurate result can be achieved 
with higher density of internal nodes. Finally, 
separating the problem domain into several sub-
regions can increase the stability and accuracy in 
case of large velocity. 
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