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Introduction

Dielectrophoresis (DEP) is a promising method for the automated
separation of biological cells and aggregates based on the
exploitation of their physical properties when subjected to
non-uniform electric �elds.

In this work we have studied, developed and compared di�erent
methods for the force computation depending on the �eld
non-uniformity factor and on the dimensions of the cellular aggregate
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Cellular aggregate's model

Geometrical model of the reciprocal single cells
disposition inside the aggregate and a microscope
image of a mouse Langerhans islet.
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DEP force in alternated electric fields
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+ Ēk

∂Ē∗
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Ēi

∂Ē∗
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∂Ē∗
i

∂xi
+ Ēj
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Electric field computation

Boundary conditions for the electric
potential

Computed electric potential

electric insulation

V = V0

V = −V0
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Second order derivatives computation

In the quadrupole DEP force term the second order �eld derivatives appear.

⇓

A subdomain weak form equation in COMSOL Multiphysics PDE modes has
been added to the existing model exploiting the Green's �rst identity:∫

Ω

v∆ϕ =

∫
Ω

∇v · ∇ϕ +

∫
∂Ω

v
∂ϕ

∂n

where

Ω is the domain;

∂Ω is the domain boundary;

n is the outgoing unit normal.

Then, if we

create a new variable (say E1) representing ∂Ex
∂x

,

substitute v with the Ex computed value,

substitute ϕ with the test function,

divide the equation in the part acting on Ω and the one on its boundary,

we get E1 = ∂Ex
∂x

that can be easily di�erentiated.
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DEP force pointwise approximations: dipole vs

quadrupole

The accuracy of the dipole approximation with respect to the quadrupole
one depends on the particle/aggregate's radius and on the �eld
non-uniformity.

The two approximations are computed for di�erent values of the
�eld non-uniformity (electrodes width between 50 and 150µm) and
of the particle's radius (5-50µm).

The average of e =
|FDEP,quad|

|FDEP,quad|+|FDEP,dip|
is computed.

A threshold value is �xed so that, given a �eld non-uniformity, it is
possible to de�ne a radius value below which the dipole
approximation is enough.
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DEP force pointwise approximations: dipole vs

quadrupole

150 µm wide electrodes
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Higher order approximations

When the quadrupole approximation is not accurate, further multipole
terms should be considered in the force calculation.

⇓
Higher order electric �eld derivatives are introduced.

⇓

Numerical approximation problems increase.

⇓

Another method is proposed to compute the DEP force: the
discrete method.
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Discrete method for the force computation

In continuum area:

F =
∫

Ω
df

(dΩ) where df
(dΩ) is the

�in�nitesimal� force acting on the
�in�nitesimal� volume dΩ.

In discrete area:

F =
∑N

i=1 dF i where dF i is the
force acting on the i-th volume,

small but �nite.

Discrete method

The force is computed in the centers of each small volume, enough small
to use the dipole force approximation, and, then, all the contributions are
summed up to give the total DEP force.
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DEP force approximations: quadrupole vs

discrete

To compare the quadrupole approximation with the results got with the
discrete method we proceed similarly as for the comparison between the
dipole and the quadrupole approximations.

The two DEP force approximations are computed for di�erent values
of the �eld non-uniformity and of the particle radius.

De�ning an appropriate function d that estimates the di�erence
between the two approximations and a threshold value, a plot similar
to the previous one is obtained.
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Resumptive plot

Field non-uniformity estimate: average of√(
∂Ex
∂x

)2
+
(
∂Ex
∂y

)2
+
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∂Ey
∂x

)2
+
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Drag Force

The particles move inside a micro�uidic medium and experience a drag
force.

For the dimensions and velocities that appear in this kind of
dielectrophoretic experiments it could be approximated as

Fdrag = −6πηRv

where

η is the �uid viscosity;

R is the particle's radius;

v is the particle's velocity.
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configuration
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Conclusion

To conclude, the major topics of this work have been:

the de�nition of the discrete force;

the comparison between di�erent computational methods for the
DEP force depending on the �eld non-uniformity factor and on the
aggregate's dimension;

the de�nition of threshold values that allow to choose which
computational method to be used;

the experimental-simulation comparison that is quite good once we
consider a further friction force that postpones the simulated motion
start.
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Thanks for your attention!

Contacts:
federica.maggioni@hotmail.it

sarah.burgarella@st.com
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