

3D EM-Simulation

Case study of common mode choke 40A - Mauro Balestrini - Andrea Camera

Case study of common mode choke

Product: DKIV 40 A ferrite choke

Goal:

• Correctly predict impedance from 10 kHz to 50 MHz.

Stages:

- Stage 1: First simulation model
- Stage 2: Geometry and material analysis
- Stage 3: Analysis of air volume and Electrical Field effect.
- Stage 4 : Final improved model setup

Additional output:

• Manage parameters to optimize choke design.

Stage 1 - Geometry

 Coordinate System Selection 		
Coordinate system:		
Global coordinate system		lanuta
 Constitutive Relation B-H 		inputs:
Magnetization model:	Property Variable Expression Unit	CAD geometry
Relative permeability -	Electrical conductiv sigma_i 1 S/m	
$\mathbf{B} = \mu_0 \mu_r \mathbf{H}$	Relative permeability mur_iso 10000 1	Core permeability
Relative permeability:		Current
μ_r From material \bullet		Ourion

CAD semplification and air domain inclusion.

The air domain defines the volumes where the magnetic field will be calculated.

It has to be considered a good compromise between mesh density and domain dimensions.

Stage 1 - Permeability data

Stage 1 - Test lab measure

Impedance: Magnitude (Ω) Test

Impedance measurement setup

DKIV-1 40 A FER (3-127-614) measurement setup: 10 kHz – 10 MHz, 1601 points, Z magnitude

Stage 1 - First results with $\mu r = cost$

Impedance: Magnitude (Ω) Test vs FEM

Stage 1 – First results with $\mu r = cost$, Boundary layers

Boundary layers: Mesh refinement on the external conductor contour in order to catch the current gradient (Skin effect).

Stage 1 – First results with $\mu r = cost$, Boundary layers

Impedance: Magnitude (Ω) Test vs FEM

Stage $1 - \mu r$ (freq)

Inserted in COMSOL the relative permeability characteristic received by supplier. A new function **mur(freq)** has been created in the material properties.

Stage 1– Improved FEM model results.

Impedance: Magnitude (Ω) Test vs FEM

The μ r in input has a big influence in the result.

The data are not converging especially at high frequency.

Stage 1 – Improved FEM model results

µr DS and µr measured are very different at medium/high frequency

Stage 1 – Improved FEM model results.

	 Permeability values very influent in the simulation model. Datasheet of permeability values is incomplete.
Stage 1	•Permeability measurements ≠ datasheet
Results	• Depth FEM model with new samples with clear characteristics.
Next steps Stage 2	 Simple choke model prepared in Laboratory. To improve permebiality data coming from core suppliers. To analyse the influence of permeability uncertainty in the results.

Stage 2 – Permeability data

DS with complex permeability data

ELECTRONIC COMPONENTS

Stage 2 – First results

Stage 2 – Choke in Air

We performed simulations and tests comparison for a choke in air (core in plastic). The goal was to check if the modelling is OK without permeability values influence.

Stage 2 – Choke in Air

FEM vs LAB measure FEM vs LAB measure 1000 40 ----FEM -FEM 35 LAB measure 1 100 - LAB measure 2 30 mpegdence [Ω] 25 Impegdence $[\Omega]$ 10 20 1 15 1.00E+04 1.00E+ 1.00E+06 1.00E+03 1.00E+07 1.00E+08 10 0.1 5 0.01 0.00E+00 2.00E+06 4.00E+06 6.00E+06 8.00E+06 1.00E+07 Frequency [Hz] Frequency [Hz]

We noted that measurement is strongly dependent on geometry. Just by modifying by hand the coils and the length of the terminations we progressively reduced the gap with simulation.

Stage 2 – Improved FEM model results.

Stage 1 Results	 Permeability values very influent in the simulation model Datasheet of permeability values is incomplete Permeability measurements ≠ datasheet Depth FEM model with new samples with clear characteristics
Stage 2 Results	 Impedance measure is dependent on winding geometry but not relevant in log scale. FEM model is working fine without permeability uncertainty.
Next steps Stage 3	 Enlargement of air volume effect. Magnetic and Electric Fields setup + boundary layers.

- Enlarged air volume
- Boundary layers on max frequency (10 MHz)

 Parameters 					
Name Expression Value Description					
f 10 [MHz] 1E7 Hz					
sig_cu 5.998e7[S/m] 5.998E7 S/m					
delta_cu sqrt(1/(pi*f*sig 2.055E-5 m					

Input:

 Re and Im permeability data

• MEF study (magnetic and electric field).

A 🌺 Magnetic and Electric Fields (mef)		
Ampère's Law and Current Conservation 1		
Magnetic Insulation 1		
al Initial Values 1		
Gauge Fixing for A-field 1		
Ampère's Law and Current Conservation 2		
Signature Electrical Circuit (cir)		
🔺 🛕 Meshes		
Mesh 1		
🚵 Mesh 2		
🔺 👓 Study 1 - MEF		
XXX Step 1: Frequency Domain		
Solver Configurations		
4 🚇 Results		
Datasets		
BHS Derived Values		
Tables		
Magnetic Flux Density Norm (mef)		

Impedance: Magnitude (Ω) Test vs FEM

Impedance: Magnitude (Ω) Test vs FEM

Stage 3 – Improved FEM model results.

Stage 2 Results • Impedance measure is dependent on winding geometry but not relevant in log scale. • FEM model is working fine without permeability uncertainty. • Magnetic and Electric Field approach is closer to measured values. • No considerable effect of Boundary layers • No effect of enlarged air volumes. • Simulation model not reliable between 1 MHz and 10 MHz	Stage 1 Results	 Permeability values very influent in the simulation model Datasheet of permeability values is incomplete Permeability measurements ≠ datasheet Depth FEM model with new samples with clear characteristics
 Stage 3 Results •Magnetic and Electric Field approach is closer to measured values. •No considerable effect of Boundary layers •No effect of enlarged air volumes. •Simulation model not reliable between 1 MHz and 10 MHz 	Stage 2 Results	 Impedance measure is dependent on winding geometry but not relevant in log scale. FEM model is working fine without permeability uncertainty.
	Stage 3 Results	 Magnetic and Electric Field approach is closer to measured values. No considerable effect of Boundary layers No effect of enlarged air volumes. Simulation model not reliable between 1 MHz and 10 MHz
•Deep analysis on permeability measurements. •Comparison plot with measurement and EMC 1D simulation software. •FEM model setup improving.	Next steps/ Stage 4	 Deep analysis on permeability measurements. Comparison plot with measurement and EMC 1D simulation software. FEM model setup improving.

Input: New permeability LAB measurement

New Material permeability characteristic imported in COMSOL with Magnetic losses approach. B= μ_0 (µ' - iµ'')H

New core geometry without external shells V6. (low impact)

- Magnetic and Electric Field
- Air conductivity dependent to frequency
- Core conductivity
- LAB new permeability measurement input

▼ N	laterial Contents					
**	Property	Variable	Value	Unit	Property	
	Relative permeability	mur_iso ; murii =	1	1	Basic	
	Relative permittivity	epsilonr_iso ; epsil	1	1	Basic	
	Electrical conductivity	sigma_iso ; sigmaii	1[S/m]/(10*freq)	S/m	Basic	

Gauge Fixing for A-field Divergence condition variable scaling:

 ψ_0 1

A/m

Results

Impedance: Magnitude (Ω) Test vs FEM

Results Impedance: Magnitude (Ω) Test vs FEM 10000 1000 Impedance $[\Omega]$ 100 Good correlation over all frequency range 10 -LAB measure ----- FEM MEF DS supplier + core conductivity -----FEM MEF + V6 setup FEM V6 Permeability LAB last setup 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08 Freq. [Hz]

Stage 4 – FEM model setup improvement

Results Impedance: Magnitude (Ω) Test vs FEM (relative permebility/Magnetic losses)

Impedance comparison (Ω) COMSOL vs EMC SW V2.0

Final Results & Achievements

- Quality of input data is a must
 - Single strip measurement
 - One core, one measurement
- MEF simulation
- Air volume has low impact / 3D simulation volume has been optimized
- Skin effect is negligible
- Good agreement for a ferrite 1-phase choke
 - Good prediction throughout the spectrum
 - Gap with measurement is due to magnetic tolerance, geometrical tolerances, simulation uncertainties

Other COMSOL 3D FEM Studies.

Authors

Mauro Balestrini Mechanical Engineer <u>mauro.balestrini@schurter.com</u>

Andrea Camera Electronic Engineer andrea.camera@schurter.com

