Mechanistic Study of Plasmonic Photocatalysts through Near-electric Field Simulations

Ramesh Asapu*1, Siegfried Denys², Sammy Verbruggen², Silvia Lenaerts² ^{1*}Indian Institute of Technology Jodhpur, Jodhpur, India ²University of Antwerp, Belgium

COMSOL CONFERENCE 2023 BENGALURU

November 30–December 1 gokulam grand hotel & spa, bengaluru

ChemE Department of Chemical Engineering

Introduction: Plasmons

Plasmonic nanoparticles: Plasmons \rightarrow oscillating cloud of electrons in resonance with \vec{E} of incident light wave \succ

*iStockphoto/Thinkstock

* Church of our Lady, Antwerp Cathedral

 \succ Medieval artisans: mixing gold and silver salts to create stained glass \rightarrow SPR of nanoparticles

Plasmon-enhanced Photocatalysis

- Coupling plasmonic nanoparticles i.e., Ag/Au/Cu with photocatalysts
- Induces broad visible light response using SPR properties
- Mechanism How! Parameters!

Surface Plasmon Resonance (SPR) properties

Hot spots and the resulting near-field and charge transfer effects at the interface of metal-semiconductor photocatalyst. **R. Asapu et al. ACS Appl. Nano Mater. 2, 4067–4074 (2019)*

Plasmonic Photocatalysis: Mechanistic Study

Understanding the role of near-field and charge transfer

Mechanistic approach: Different Photocatalytic Systems

- Insulating shell/spacer layer: Layer-by-Layer (LbL) method
 - 4 layers: 1.7 ± 0.5 nm separation 0
 - 12 layers: 3.2 ± 0.8 nm separation 0
- Conductive shell/spacer layer: In-situ polymerization method (PANI)
 - 30 min: 1.4 ± 0.5 nm separation 0
 - 180 layers: 7.5 ± 1.6 nm separation 0

UV-A

- Spin coating on glass and ALD (atomic layer deposition) on COK Si substrates Air
- Acetaldehyde and stearic acid as model pollutants

COMSOL near-electric field simulations: How and Why?

- Wave Optics physics in wavelength domain study
- Maxwell's Electromagnetic wave equations are solved for scattered fields

$$\nabla \times \left[\frac{1}{\mu_r} (\nabla \times E_{sca})\right] - {K_0}^2 \left[(\mathcal{E}_r - \frac{j \sigma}{\omega \mathcal{E}_0}) \right] E_{sca} = 0$$

where $E_{\mbox{\scriptsize sca}} - \mbox{\scriptsize scattered}$ electric field

- K_{0} wavenumber in free space
- μ_{r} relative permeability of medium
- ϵ_r permittivity of medium
- Enhancement is due to both incident and scattered fields.
- > EM or field enhancement $|E/E_0|$ is dependent:
 - Inter-particle distance & probe molecule distance dependence: *nanogap*
 - laser excitation wavelength
 - NP shape and size

Plasmonic Photocatalysis: Insights via Mechanistic Study

Field enhancement distribution maps of $Au-TiO_2$ systems with the projection of TiO_2 surface contours with a height intensity scale the bottom for different systems.

Ag plasmon enhanced TiO₂ gas phase photocatalysis

> Significance of Near-field enhancement \rightarrow a more important role!

Experiments to support simulation trends SERS (Surface enhanced Raman spectroscopy)

 \geq Surface enhanced Raman spectroscopy \rightarrow Scattering of light / photons by molecule located near plasmonic nanoparticle

 \geq SERS applications: Identifying of substances \rightarrow detection of drugs up to ppb i.e., 0.000001 g

SERS: An experimental support for theoretical near-field simulations

- SERS Enhancement Factor (EF) depends on:
 - Electromagnetic enhancement —
 in hot spots

- Nanogap between nanoparticles is controlled by shell thickness
 - Charge transfer / chemical enhancement can be ruled out due to *Insulating property* of the polyelectrolyte shell
 - > Shell thickness increase \rightarrow increase in Nanogap \rightarrow Decay of SERS EF (experimental vs theoretical)

Au NPs encapsulated with a) four (Au_L4), b) eight (Au_L8) and c) twelve (Au_L12) layers of polyelectrolyte

SERS EF: Experimental vs Theoretical Near-field decay

- $\succ EF_{exp} = \frac{\begin{bmatrix} I_{SERS} / N_{SERS} \end{bmatrix}}{\begin{bmatrix} I_{RS} / N_{RS} \end{bmatrix}}$ $\succ EF_{calc} = \left| \frac{E}{E_0} \right|^4$
- Distance decay of SERS EF
 - Ag plasmonic systems < 2 nm
 - Au plasmonic systems < 3 nm
- SERS experiments and near-field simulations complement each other.

Conclusions & Future work

- The near-electric field simulation results corroborate the experiments
 - crucial insight that near-field enhancements are vital for the photocatalytic reaction rate enhancement
- Near-field effect becomes insignificant for shell thicknesses exceeding 3 nm.
 - hints at a dominant role of the near-field enhancement mechanism.

Future Work: Quantification of near-electric field simulations

- Near-Field Scanning Optical Microscopy (NSOM)
- Mapping the nanoscale electromagnetic near-field using optical forces

References:

f١

॥ त्वं ज्ञानमयो विज्ञानमयोऽसि ॥

- R. Asapu et al. ACS Appl. Nano Mater. 2, 4067–4074 (2019)
- R. Asapu et. Al. ACS Appl. Mat. & Interf. 9 (47), 41577-41585 (2018)
- R. Asapu et. al. Applied Catalysis B: Environmental 200, 31-38 (2017)
- Claes. N, R. Asapu et. al. Nanoscale, 2018,10, 9186-9191 (2018)
- S. Verbruggen et al. Appl. Cat. B: Environmental 188, 147–153 (2016)

Acknowledgements:

Research Foundation Flanders

Opening new horizons

ALD FOTOKAT Project

Center for Surface Chemistry and **Catalysis**