

Plane-wave Expansion based modelling of Cassegrain-type Reflective Objective

Development and validation of a plane-wave expansion based model to precisely emulate the effect of modified excitation from a Cassegrain-type reflective objective in linear and non-linear optical responses.

Lal Krishna A S\#, Jayanta Deka\#, Jyothsna K. M., Rabindra Biswas, Varun Raghunathan* Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru 560012, India lalkrishna@iisc.ac.in, *varunr@iisc.ac.in

\# These authors contributed equally to this work

Abstract

- Cassegrain-type reflective objectives :: highresolution infrared optical micro-spectroscopy experiments
- Aberration-free optics
- Central obscuration :: positioning of the secondary mirror with respect to the primary mirror
- Effect of obscuration :: linear and non-linear response
- Our work
- Modelling optical responses due to reflective objective
- COMSOL Multiphysics's wave optics module
- Model and simulate the linear and non-linear optical responses
- Amorphous-germanium (a-Ge) on quartz-based metasurface

Plane wave expansion model

(a) Refractive Objective
(b) Reflective Objective

Results

- Validation of the model :: comparing the responses of reflective objective and a conventional refractive objective
- Linear :: Transmission spectra, Non-linear :: Third-order sum frequency generation (TSFG) spectra
- Good agreement in experimental and model results
- Model arbitrary source excitation, Less memory requirement and computational cost.

REFERENCES

