

Bio-syngas fueled operation of a Solid Oxide Fuel Cell-Numerical simulations in COMSOL and experimental validation

COMSOL Multiphysics is employed to develop a numerical model of Solid Oxide Fuel Cell to study the intricate interactions

Dr Lathapriya V¹, Dr Mishma SS¹, Dr Anand MS², Prof S Dasappa³ ¹Research Scientist; ²Senior Research Scientist; ³Professor and Chair Interdisciplinary Center for Energy Research, Indian Institute of Science; Bangalore, India

Abstract

This study focuses on modeling and analysis of an SOFC of flat tubular cell geometry, and between using air and oxygen as cathode fuels and explores two distinct bio-syngas compositions employed as the anode fuel. COMSOL Multiphysics is used to integrate various physical phenomena such as mass transport, charge-transfer kinetics, flow distribution in gas channels/ porous electrodes, electrochemical reactions and heat transfer. The current and power values of syngas and producer gas fueled SOFCs in an oxygen environment are 5724 A/m² and 1789 W/m² (syngas) and 3737 A/m² and 1369 W/cm² (producer gas), respectively. It is observed that syngas/producer gas operated with oxygen as cathode fuel resulted in a maximum current and power values than air as cathode fuel, due to the dilution effects Nitrogen in air. The study gives an understanding of syngas-fueled and producer gas-fueled SOFCs and the influence of cathode fuel selection on their performance.

Methodology

- COMSOL Multiphysics version 6.0 to create a numerical model for a Flat Tubular Solid Oxide Fuel Cell (FT-SOFC) is employed.
- 3-D model which includes various components such as the anode flow channel, anode Gas Diffusion Electrode (GDE), Ni-YSZ membrane, cathode GDE, and cathode flow channel is constructed.
 Performance of the model is studied using simulated bio-syngas of two different composition (Table 1) in an oxygen and air environment.

Figure 1:Left - Fuel cell modelling steps in COMSOL Multiphysics. Right - Geometric representation of FT-SOFC Constructed employing COMSOL Multiphysics in 2D and 3D. Table 1: Composition of simulated Bio-syngas employed as anode fuel feed in a Flat-tubular SOFC model

• Performance is assessed through polarization and power curves, distribution of species within the fuel cell, velocity profiles, pressure distribution, and electrochemical behavior of the FT-SOFC model

Results

- In O₂ environment, current and power values are recorded at 5724 A/m² and 1789.8 W/m², respectively for Syngas-1. These values are slightly lower, with a current of 5378 A/m² and power of 1735.7 W/m², for Syngas 2. But Syngas-2 showed higher values than Syngas-1 under air environment.
- Air as oxidizing medium has significant impact on various factors

influencing SOFC performance – activation, ohmic, and mass transport losses and electrochemical performance.

• The electrolyte potential of FT-SOFC in an O₂ rich environment is higher than in air, due to the high oxide ion mobility from oxygen rich fuel for electrochemical reactions to takes place,

Figure 2: A - Polarization and Power Curves of Modeled FT-SOFC at syngas-1 composition in an Oxygen and air environment
B - Polarization and Power Curves of Modeled FT-SOFC at syngas-2 composition in an Oxygen and air environment
C - Distribution of electrolyte potential and electrolyte current density vector of syngas-1 in an air and oxygen environment
simulated at 0.05 V & 0.8 V. Multislice: Electrolyte potential (V) & Arrow volume: Electrolyte current density vector

REFERENCES

- 1. N. O. Lemcoff and M. Tweedie, "CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell", Proceedings of the COMSOL Conference in Boston, 2014.
- 2. Abed Al-Hadee Nassar and Obaida Abu Saleh, "Analysis of Fuel cells using COMSOL Multiphysics and comparison between major types of Fuel cells SOFC and PEMFC", Thesis, Palestine Polytechnique University, 2015.
- 3. Andersson, Martin, Jinliang Yuan, and Bengt Sundén. "SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants." Journal of Power Sources, pp. 42-54, 2013.
- Zhu, Pengfei, et al. "Multiphysics field modeling of biomass gasification syngas fueled solid oxide fuel cell." Journal of Power Sources, pp: 230470, 2021.

Excerpt from the Proceedings of the 2023 COMSOL Conference