From: 2-3 days **Calorimetry Experiments**

Thermocouple fitted TCP window

Introduction

To: few hours COMSOL Model

Predicting Heat Flux to TCP Window in Etch Chambers

Using COMSOL to obtain fast estimates of heat flow and temperature distribution in inductivelycoupled plasma chambers during operation

Anamika Chowdhury¹, Saravanapriyan Sriraman² 1 Lam Research India Pvt. Ltd, Bengaluru, India 2 Lam Research, Fremont, USA

To minimize transformer-coupled plasma (TCP) window efficient modeling solution to estimate TCP window heatthermal stresses and cracking incidents, air-cooled plenum flux as an alternative to calorimetry experiments. Results demonstrate COMSOL can provide fast estimates TCP design must be optimized considering the heat-flux to the TCP window. Currently, heat flux to the TCP window is window heat-flux in Etch chambers and further highlight the significant contribution of surface reactions to TCP window estimated from calorimetry experiments with run-time of several days. This project aims to develop a time and costheat-flux.

*Normalized values

Methods

Simulations done in COMSOL 5.5 coupling different modules:

Plasma Magn	etic Field Lam	inar Flow Hea	at Transfer
-------------	----------------	---------------	-------------

- Drift-diffusion equations¹ for e- mass and energy conservation
- Multi-component diffusion equation for heavy species transport
- Reactions implemented for Ar chemistry using cross-sectional reaction rates and Druyvesteyn EEDF
- Surface reactions to model species de-excitation
- Ampere's law solved in each domain
- Coils excited with a given power input

Figure 1. Electron density and temperature from COMSOL simulations (on compare favorably against HPEM results (on right). HPEM left) demonstrates a centered core, while COMSOL has a slightly shifted core

Results

COMSOL 2d models have run-time less than 30 minutes!

COMSOL results highlight the peak heat-flux locations in dielectric window thus guiding colling system design.

- Results provide good agreement with HPEM and experimental data
- Surface reactions are the primary contributors to dielectric window heat flux

- Compressible flow with no slip boundary
- Energy conservation for heavy species with heat input from plasma reactions and joule-heating (under electric field)
- External boundaries at constant temperature

Figure 2. (Left) Contributions to TCP-window heat flux with TCP power = 800W TCCT 1.84. (Right) Comparison of heat-flux predictions from COMSOL simulations for various TCCTs against experimental data with TCP power = 2500W.

- $Ar^* \rightarrow Ar \Delta H_{rxn} = 1110 \, \text{kJ/mol} (\sim 8\% \, \text{TCP heat flux})$ $Ar^+ \rightarrow Ar \Delta H_{rxn} = 1520 \text{ kJ/mol} (\sim 85\% \text{ TCP heat flux})$
- Next Steps:
 - Extend model to include EEDF from Boltzmann equation and energy dependent mobilities
 - Further validation using different chemistries and effects (*e.g.*, wafer-bias *etc.*)

REFERENCES

*Normalized values

- 1. P Baille et al 1981 J. Phys. B: Atom. Mol. Phys. 14 1485
- 2. COMSOL 5.5 User's Manual: Plasma Module
- 3. Kushner, Mark J. Journal of Physics D: Applied Physics 42.19 (2009)

Excerpt from the Proceeding of the 2023 COMSOL Conference