FEM Based Design and Simulation Tool for MRI Birdcage Coils Including Eigenfrequency Analysis

Necip Gurler and Yusuf Ziya Ider

Electrical and Electronics Engineering Department Bilkent University, Ankara, TURKEY

COMSOL CONFERENCE EUROPE 2012

11.10.2012 Milan, Italy COMSOL CONFERENCE EUROPE 2012

Excerpt from the Proceedings of the 2012 COMSOL Conference 🖬 Milan 💷 🔧 🚊 🔊 ର 🔇

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils
- 2 Motivation
 - Review of previous studies
 - Problem definition
 - Our work

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool

Experimental Results

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Outline

1

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool
 - Experimental Results

5 Conclusion

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Outline

1

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool
 - Experimental Results

5 Conclusion

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

What Do the RF Coils Serve in MRI?

- generate RF magnetic field (B₁ field) at the Larmor frequency
- receive RF signals at the same frequency

Source of figures: http://www.cis.rit.edu/htbooks/mri/chap-9/chap-9.htm

< /₽ ▶

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Head Coil Example

Source of figure: http://www.healthcare.philips.com

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< 🗇 ▶

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Outline

1

- Introduction
 - RF coils in MRI

RF birdcage coils

Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool
 - Experimental Results

5 Conclusion

< 🗇 ▶

Motivation Methods xperimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

based on the lumped element delay line (Hayes et al., 1985)

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

based on the lumped element delay line (Hayes et al., 1985)

widely used in MRI

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

based on the lumped element delay line (Hayes et al., 1985)

widely used in MRI

Advantages

< ロ > < 同 > < 回 > < 回 > .

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

based on the lumped element delay line (Hayes et al., 1985)

widely used in MRI

Advantages

very homogeneous RF magnetic field

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

based on the lumped element delay line (Hayes et al., 1985)

widely used in MRI

Advantages

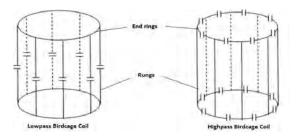
- very homogeneous RF magnetic field
- high signal-to-noise ratio (SNR)

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

RF Birdcage Coils

based on the lumped element delay line (Hayes et al., 1985)

widely used in MRI

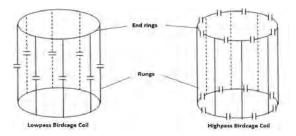

Advantages

- very homogeneous RF magnetic field
- high signal-to-noise ratio (SNR)
- quadrature excitation and reception capability

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation Methods experimental Results Conclusion RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Birdcage Coils Consist of...

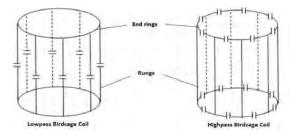

Necip Gurler COMSOL CONFERENCE EUROPE 2012

문에서 문어 :

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Birdcage Coils Consist of...

 two circular end rings connected by N equally spaced rungs (or legs)



∃ ► < ∃ ►</p>

RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Birdcage Coils Consist of...

- two circular end rings connected by N equally spaced rungs (or legs)
- capacitors on the rungs or end rings or both

Motivation Methods Experimental Results Conclusion RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Resonance Behavior of Birdcage Coils

A birdcage coil with N number of rungs and equal valued capacitors has

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Motivation Methods Experimental Results Conclusion

RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Resonance Behavior of Birdcage Coils

A birdcage coil with N number of rungs and equal valued capacitors has

N/2 resonant modes (m=1,2... N/2)

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation Methods Experimental Results Conclusion

RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Resonance Behavior of Birdcage Coils

A birdcage coil with N number of rungs and equal valued capacitors has

- N/2 resonant modes (m=1,2... N/2)
 - degenerate mode pairs two modes with the same frequency

Motivation Methods Experimental Results Conclusion

RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Resonance Behavior of Birdcage Coils

A birdcage coil with N number of rungs and equal valued capacitors has

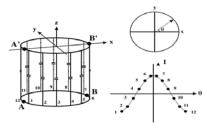
- N/2 resonant modes (m=1,2... N/2)
 - degenerate mode pairs two modes with the same frequency
- end ring resonant mode (m=0)

Motivation Methods Experimental Results Conclusion

RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Resonance Behavior of Birdcage Coils

A birdcage coil with N number of rungs and equal valued capacitors has


- N/2 resonant modes (m=1,2... N/2)
 - degenerate mode pairs two modes with the same frequency
- end ring resonant mode (m=0)
 - currents only flow in the end rings Helmholtz pair

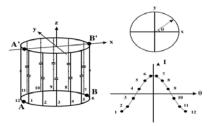
(4 同) (4 回) (4 回)

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Which Resonant Mode is used in MRI?

- most homogeneous B₁ field
- sinusoidal current distribution in the rungs for m = 1 mode

Source of figure: M. Lupu, MAGMA, 2004, 17, 363-371

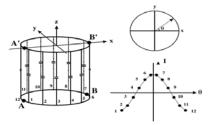

< A >

Motivation Methods Experimental Results Conclusion RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Which Resonant Mode is used in MRI?

most homogeneous B₁ field

sinusoidal current distribution in the rungs for m = 1 mode


Source of figure: M. Lupu, MAGMA, 2004, 17, 363-371

∃ > ∢ ∃

Motivation Methods Experimental Results Conclusion RF coils in MRI **RF birdcage coils** Design and simulation of RF birdcage coils

Which Resonant Mode is used in MRI?

- most homogeneous B₁ field
- sinusoidal current distribution in the rungs for m = 1 mode

Source of figure: M. Lupu, MAGMA, 2004, 17, 363-371

÷

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Outline

1

- Introduction
 - RF coils in MRI
 - RF birdcage coils

Design and simulation of RF birdcage coils

- 2 Motivation
 - Review of previous studies
 - Problem definition
 - Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool
 - 4 Experimental Results

5 Conclusion

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

• use the correct capacitance value

- calculate an initial capacitance value
- tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ コ マ チ (雪 マ チ (雪 マ ー)

Introduction Motivation Methods

Conclusion

Experimental Results

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Designing a RF Birdcage Coil

In order to generate a homogeneous B_1 field at the desired frequency;

- use the correct capacitance value
 - calculate an initial capacitance value
 - tuning and matching procedures
- knowing resonant modes of the birdcage coil
 - tuning and matching procedures can be done without interfering with the other modes
 - m=0 mode is used in open MRI systems

Motivation Methods Experimental Results Conclusion RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Simulating a RF Birdcage Coil

Solving for the electromagnetic fields of a birdcage coil at the specified frequency.

- *B*₁ field distribution inside the coil
- specific absorption rate (SAR) at any object
- variation of any electromagnetic field variables with respect to frequency

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction Motivation Methods

Conclusion

Experimental Results

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Simulating a RF Birdcage Coil

Solving for the electromagnetic fields of a birdcage coil at the specified frequency.

- B₁ field distribution inside the coil
- specific absorption rate (SAR) at any object
- variation of any electromagnetic field variables with respect to frequency

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Simulating a RF Birdcage Coil

Solving for the electromagnetic fields of a birdcage coil at the specified frequency.

- B₁ field distribution inside the coil
- specific absorption rate (SAR) at any object
- variation of any electromagnetic field variables with respect to frequency

< ロ > < 同 > < 回 > < 回 > .

RF coils in MRI RF birdcage coils Design and simulation of RF birdcage coils

Simulating a RF Birdcage Coil

Solving for the electromagnetic fields of a birdcage coil at the specified frequency.

- *B*₁ field distribution inside the coil
- specific absorption rate (SAR) at any object
- variation of any electromagnetic field variables with respect to frequency

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Review of previous studies Problem definition Dur work

Outline

- Introduction
 RF coils in MRI
 RF birdcage co
 - Design and simulation of RF birdcage coi
- 2 Motivation
 - Review of previous studies
 - Problem definition
 - Our work

3 Method

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- Experimental Results

5 Conclusion

< 回 > < 回 > < 回 >

Review of previous studies Problem definition Our work

Outline

- IntroductionRF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

Review of previous studies

- Problem definition
- Our work

3 Methods

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- Experimental Results

5 Conclusion

< 回 > < 回 > < 回 >

Review of previous studies Problem definition Our work

Studies on Designing a Birdcage Coil

Tropp, 1989

analyzing low-pass birdcage resonator - using lumped circuit element model and perturbation theory

Jin, 1989

resonant modes calculation - lumped circuit element model

Pascone et al., 1991

analyzing both low-pass and high-pass birdcage coil - using transmission line theory

Leifer, 1997

resonant modes calculation - using discrete Fourier transform

Chin et al., 2002

capacitance calculation - lumped circuit element model

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Review of previous studies Problem definition Our work

Studies on Designing a Birdcage Coil

Tropp, 1989

analyzing low-pass birdcage resonator - using lumped circuit element model and perturbation theory

Jin, 1989

resonant modes calculation - lumped circuit element model

Pascone et al., 1991

analyzing both low-pass and high-pass birdcage coil - using transmission line theory

Leifer, 1997

resonant modes calculation - using discrete Fourier transform

Chin et al., 2002

capacitance calculation - lumped circuit element model

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Review of previous studies Problem definition Our work

Studies on Designing a Birdcage Coil

Tropp, 1989

analyzing low-pass birdcage resonator - using lumped circuit element model and perturbation theory

<u>Jin, 1989</u> - MRIEM Software Tool resonant modes calculation - lumped circuit element model

Pascone et al., 1991

analyzing both low-pass and high-pass birdcage coil - using transmission line theory

Leifer, 1997

resonant modes calculation - using discrete Fourier transform

Chin et al., 2002

capacitance calculation - lumped circuit element model

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Review of previous studies Problem definition Our work

Lumped Circuit Element Model

- end rings and rungs are modeled as inductors
- self and mutual inductances are calculated using handbook formulas
- equivalent circuit model (LC network) is solved using Kirchoff's voltage and current laws

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Review of previous studies Problem definition Our work

Lumped Circuit Element Model

end rings and rungs are modeled as inductors

- self and mutual inductances are calculated using handbook formulas
- equivalent circuit model (LC network) is solved using Kirchoff's voltage and current laws

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Review of previous studies Problem definition Our work

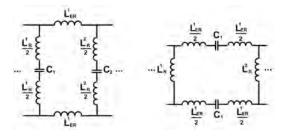
Lumped Circuit Element Model

- end rings and rungs are modeled as inductors
- self and mutual inductances are calculated using handbook formulas
- equivalent circuit model (LC network) is solved using Kirchoff's voltage and current laws

< ロ > < 同 > < 回 > < 回 > .

Review of previous studies Problem definition Our work

Lumped Circuit Element Model


- end rings and rungs are modeled as inductors
- self and mutual inductances are calculated using handbook formulas
- equivalent circuit model (LC network) is solved using Kirchoff's voltage and current laws

< 回 > < 回 > < 回 >

Review of previous studies Problem definition Our work

Lumped Circuit Element Model

Figure: Equivalent lumped circuit element models for low-pass and high-pass birdcage coils

Review of previous studies Problem definition Our work

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

Review of previous studies

Problem definition

Our work

3 Methods

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- Experimental Results

5 Conclusion

< 回 > < 回 > < 回 >

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model

• heavily depends on the inductance calculations

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model in the capacitance and resonant modes calculations:

heavily depends on the inductance calculations

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model in the capacitance and resonant modes calculations:

• heavily depends on the inductance calculations

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model in the capacitance and resonant modes calculations:

 heavily depends on the inductance calculations which are made under the quasi-static assumption

伺 ト イヨ ト イヨト

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model in the capacitance and resonant modes calculations:

 heavily depends on the inductance calculations which are made under the quasi-static assumption

Example:
$$L = 0.002I \left[\ln \left(\frac{2I}{B} \right) + 0.5 \right]$$

伺 ト イヨ ト イヨト

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model in the capacitance and resonant modes calculations:

 heavily depends on the inductance calculations which are made under the quasi-static assumption

Example:
$$L = 0.002I \left[\ln \left(\frac{2I}{B} \right) + 0.5 \right]$$

frequency \uparrow

伺とくほとくほと

Review of previous studies Problem definition Our work

Limitation of Lumped Circuit Element Model

There are some limitations of using lumped circuit element model in the capacitance and resonant modes calculations:

 heavily depends on the inductance calculations which are made under the quasi-static assumption

Example:
$$L = 0.002I \left[\ln \left(\frac{2I}{B} \right) + 0.5 \right]$$

frequency \uparrow error \uparrow

・ 同 ト ・ ヨ ト ・ ヨ ト -

Review of previous studies Problem definition Our work

Modelling a Transmission Line as a Lumped Circuit Element

Deutsch et al., 1997 There is an important criterion

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Review of previous studies Problem definition Our work

Modelling a Transmission Line as a Lumped Circuit Element

Deutsch et al., 1997

There is an important criterion - used for determining whether a wire can be modeled as lumped circuit element or not -

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 同 ト ・ ヨ ト ・ ヨ ト

Review of previous studies Problem definition Our work

Modelling a Transmission Line as a Lumped Circuit Element

Deutsch et al., 1997

There is an important criterion - used for determining whether a wire can be modeled as lumped circuit element or not - which is given as

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 同 ト ・ ヨ ト ・ ヨ ト

Review of previous studies Problem definition Our work

Modelling a Transmission Line as a Lumped Circuit Element

Deutsch et al., 1997

There is an important criterion - used for determining whether a wire can be modeled as lumped circuit element or not - which is given as

length of wire
$$\leq \frac{\lambda}{20}$$

where λ is the wavelength.

< 回 > < 回 > < 回 >

Review of previous studies Problem definition Our work

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition

Our work

3 Method

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- Experimental Results

5 Conclusion

< 回 > < 回 > < 回 >

Review of previous studies Problem definition Our work

What Have We Done in this Study?

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

< /₽ ▶

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

Necip Gurler COMSOL CONFERENCE EUROPE 2012

A 10

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

• Two FEM based simulation methods

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

- Two FEM based simulation methods
 - Frequency Domain Analysis

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

- Two FEM based simulation methods
 - Frequency Domain Analysis
 - Eigenfrequency Analysis

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

- Two FEM based simulation methods
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
- Software Tool

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

- Two FEM based simulation methods
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
- Software Tool
 - FEM-FDA-EFAT

(E)

Review of previous studies Problem definition Our work

What Have We Done in this Study?

We have first developed **FEM models of low-pass and high-pass birdcage coils** in COMSOL Multiphysics.

Using these models;

- Two FEM based simulation methods
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
- Software Tool
 - FEM-FDA-EFAT

A handmade low-pass birdcage coil is constructed.

< 🗇 🕨

→ Ξ →

EM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils
- 2 Motivation
 - Review of previous studies
 - Problem definition
 - Our work
- 3 N

Methods

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- **Experimental Results**

< □ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils
- 2 Motivation
 - Review of previous studies
 - Problem definition
 - Our work
- 3

Methods

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- Experimental Results

5 Conclusion

< □ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Geometry

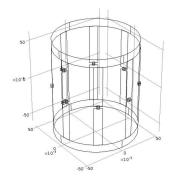
Necip Gurler COMSOL CONFERENCE EUROPE 2012

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

 low-pass and high-pass birdcage coils are geometrically modeled in the simulation environment


→ ∃ > < ∃ >

< 一 →

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

 low-pass and high-pass birdcage coils are geometrically modeled in the simulation environment

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Adding Physics

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

• Radio Frequency Branch \rightarrow Electromagnetic Waves Interface

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

- Radio Frequency Branch \rightarrow Electromagnetic Waves Interface
- solves the electromagnetic wave equation for the time harmonic and eigenfrequency problem

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ト ・ ヨ ト ・ ヨ ト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

- Radio Frequency Branch \rightarrow Electromagnetic Waves Interface
- solves the electromagnetic wave equation for the time harmonic and eigenfrequency problem

$$abla imes \mu_r^{-1}(
abla imes \mathbf{E}) - k_0^2 \left(\epsilon_r - rac{j\sigma}{\omega\epsilon_0}\right) \mathbf{E} = 0$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

 boundaries of rungs, end rings, capacitor plates and RF shield are assigned to Perfect Electric Conductor (PEC)

< 一 →

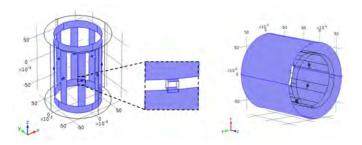
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

 boundaries of rungs, end rings, capacitor plates and RF shield are assigned to Perfect Electric Conductor (PEC)

 $\bm{n}\times\bm{E}=0$

Necip Gurler COMSOL CONFERENCE EUROPE 2012


< □ > < 同 > < 回 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

 boundaries of rungs, end rings, capacitor plates and RF shield are assigned to Perfect Electric Conductor (PEC)

 $\bm{n}\times\bm{E}=0$

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・聞 ト ・ヨ ト ・ ヨ ト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

 we need to prevent reflections from the outer boundary of the solution domain

< ロ > < 同 > < 回 > < 回 > .

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

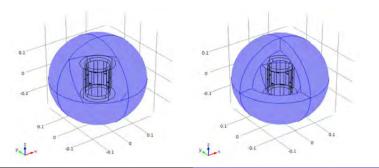
Boundary Conditions

- we need to prevent reflections from the outer boundary of the solution domain
- \bullet scattering boundary condition \rightarrow for boundaries

< □ > < 同 > < 回 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions


- we need to prevent reflections from the outer boundary of the solution domain
- \bullet scattering boundary condition \rightarrow for boundaries
- \bullet perfectly matched layer \rightarrow for domain

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

- we need to prevent reflections from the outer boundary of the solution domain
- $\bullet\ \ scattering\ \ boundary\ \ condition\ \rightarrow\ \ for\ \ boundaries$
- \bullet perfectly matched layer \rightarrow for domain

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

Necip Gurler COMSOL CONFERENCE EUROPE 2012

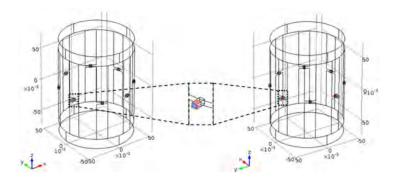
・ロト ・聞 ト ・ヨ ト ・ ヨ ト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

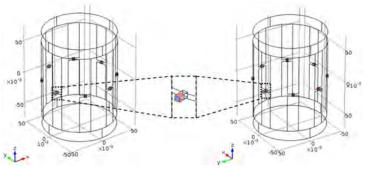
• In frequency domain analysis, lumped port boundary condition is used for voltage excitation ($Z_{port} = \frac{V_{port}}{I_{port}}$)



・ 戸 ・ ・ ヨ ・ ・ ヨ ・

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions


• In frequency domain analysis, lumped port boundary condition is used for voltage excitation ($Z_{port} = \frac{V_{port}}{I_{port}}$)

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Boundary Conditions

• In frequency domain analysis, lumped port boundary condition is used for voltage excitation $(Z_{port} = \frac{V_{port}}{I_{port}})$

In eigenfrequency analysis, no source is applied

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Necip Gurler COMSOL CONFERENCE EUROPE 2012

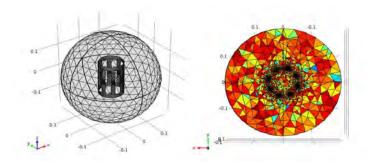
ヘロト 人間 とくほ とくほ とう

æ –

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Mesh

Necip Gurler COMSOL CONFERENCE EUROPE 2012


◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Mesh

• (*Element Size*) $<<\frac{\lambda}{5}$

Necip Gurler COMSOL CONFERENCE EUROPE 2012

ヘロン 人間と 人間と 人間と

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool
 - Experimental Results

5 Conclusion

< □ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

3

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

• at the desired frequency (or frequencies)

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< □ > < 同 > < 回 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

- at the desired frequency (or frequencies)
- for the specified capacitance value

→ ∃ > < ∃ >

< 一 →

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

- at the desired frequency (or frequencies)
- for the specified capacitance value

In Frequency Domain Analysis;

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

- at the desired frequency (or frequencies)
- for the specified capacitance value

In Frequency Domain Analysis;

loaded (or unloaded) birdcage coils

・ 同 ト ・ ヨ ト ・ ヨ ト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

- at the desired frequency (or frequencies)
- for the specified capacitance value

In Frequency Domain Analysis;

- loaded (or unloaded) birdcage coils
- shielded (or unshielded) birdcage coils

< 🗇 🕨

(*) * (*) *)

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation of a Birdcage Coil

solves for the electromagnetic fields in the solution domain

- at the desired frequency (or frequencies)
- for the specified capacitance value

In Frequency Domain Analysis;

- loaded (or unloaded) birdcage coils
- shielded (or unshielded) birdcage coils
- linear or quadrature excitation

・ 同 ト ・ ヨ ト ・ ヨ ト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

unloaded and unshielded 8-leg low-pass birdcage coil

< ロ > < 同 > < 回 > < 回 > .

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 8-leg low-pass birdcage coil

< 🗇 ▶

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 8-leg low-pass birdcage coil
- loaded and shielded 16-leg high-pass birdcage coil

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 8-leg low-pass birdcage coil
- loaded and shielded 16-leg high-pass birdcage coil

electromagnetic field distributions

(*) * (*) *)

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 8-leg low-pass birdcage coil
- loaded and shielded 16-leg high-pass birdcage coil

electromagnetic field distributions

● *H*⁺ and *H*⁻

< 回 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 8-leg low-pass birdcage coil
- Ioaded and shielded 16-leg high-pass birdcage coil

electromagnetic field distributions

● *H*⁺ and *H*⁻

$$H^+ = rac{H_x + iH_y}{2}$$
 $H^- = rac{(H_x - iH_y)^*}{2}$

< 回 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

three different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 8-leg low-pass birdcage coil
- Ioaded and shielded 16-leg high-pass birdcage coil

electromagnetic field distributions

● *H*⁺ and *H*⁻

$$H^+ = rac{H_x + iH_y}{2}$$
 $H^- = rac{(H_x - iH_y)^*}{2}$

E-field

< 同 > < 回 > < 回 >

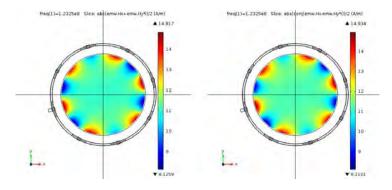
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC


\mathbf{H}^+ and $\mathbf{H}^- \to$ for linear excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

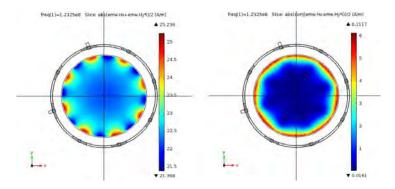
Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

\mathbf{H}^+ and $\mathbf{H}^- \rightarrow$ for linear excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC


\mathbf{H}^+ and $\mathbf{H}^- \rightarrow$ for quadrature excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

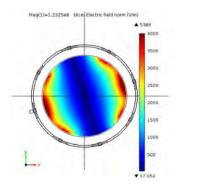
\mathbf{H}^+ and $\mathbf{H}^- \rightarrow$ for quadrature excitation

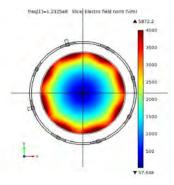
E • • • • • •

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC


Electric field \rightarrow for linear and quadrature excitation


Necip Gurler COMSOL CONFERENCE EUROPE 2012

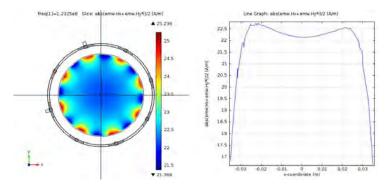
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

Electric field \rightarrow for linear and quadrature excitation

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC


\mathbf{H}^+ uniformity \rightarrow for quadrature excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

\mathbf{H}^+ uniformity \rightarrow for quadrature excitation

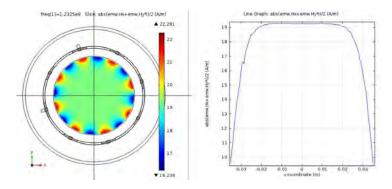
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 2nd Scenario Unloaded and Shielded 8-leg Low-pass BC

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 2nd Scenario Unloaded and Shielded 8-leg Low-pass BC


\mathbf{H}^+ uniformity \rightarrow for quadrature excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

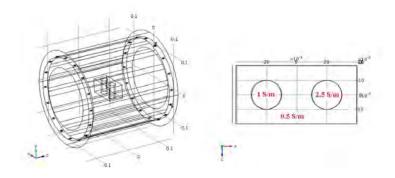
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 2nd Scenario Unloaded and Shielded 8-leg Low-pass BC

H^+ uniformity \rightarrow for quadrature excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool


Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

Necip Gurler COMSOL CONFERENCE EUROPE 2012

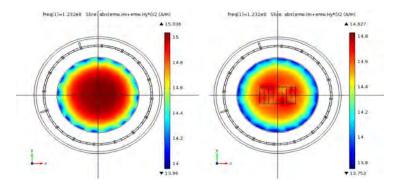
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

Geometric model

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC


$\mathbf{H}^+ \rightarrow$ for unloaded and loaded case (quadrature excitation)

Necip Gurler COMSOL CONFERENCE EUROPE 2012

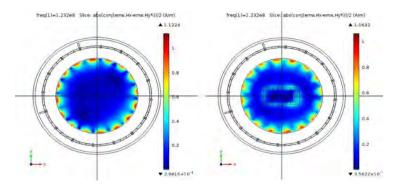
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

$\mathbf{H}^+ \rightarrow$ for unloaded and loaded case (quadrature excitation)

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC


 $H^- \rightarrow$ for unloaded and loaded case (quadrature excitation)

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

$\mathbf{H}^- \rightarrow$ for unloaded and loaded case (quadrature excitation)

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

SAR distribution of an object

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

SAR distribution of an object

$$\mathsf{SAR} = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

 σ : conductivity, ρ : density

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

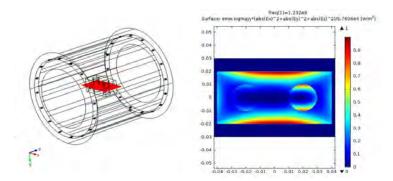
FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

SAR distribution of an object

$$\mathsf{SAR} = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

 σ : conductivity, ρ : density


Normalized SAR distribution \rightarrow for quadrature excitation

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 3rd Scenario Loaded and Shielded 16-leg High-pass BC

Normalized SAR distribution \rightarrow for quadrature excitation

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work

Methods

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- Experimental Results

5 Conclusion

< □ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Resonant Mode Analysis of a Birdcage Coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Resonant Mode Analysis of a Birdcage Coil

calculates the resonant modes of the birdcage coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Resonant Mode Analysis of a Birdcage Coil

calculates the resonant modes of the birdcage coil and the electromagnetic field distributions at these resonant modes

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< □ > < 同 > < 回 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Resonant Mode Analysis of a Birdcage Coil

calculates the resonant modes of the birdcage coil **and the electromagnetic field distributions at these resonant modes for the given capacitance value**

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 同 ト ・ ヨ ト ・ ヨ ト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Eigenfrequency Analysis in COMSOL Multiphysics

Necip Gurler COMSOL CONFERENCE EUROPE 2012

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Eigenfrequency Analysis in COMSOL Multiphysics

use developed FEM models of birdcage coils

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Eigenfrequency Analysis in COMSOL Multiphysics

- use developed FEM models of birdcage coils
- add eigenfrequency study

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< 一 →

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Eigenfrequency Analysis in COMSOL Multiphysics

- use developed FEM models of birdcage coils
- add eigenfrequency study
 - specify number of eigenfrequencies

< 一 →

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Eigenfrequency Analysis in COMSOL Multiphysics

- use developed FEM models of birdcage coils
- add eigenfrequency study
 - specify number of eigenfrequencies
 - specify a frequency point
- add eigenvalue solver

< 🗇 🕨

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Eigenfrequency Analysis in COMSOL Multiphysics

- use developed FEM models of birdcage coils
- add eigenfrequency study
 - specify number of eigenfrequencies
 - specify a frequency point
- add eigenvalue solver
 - change the linearization point (if necessary)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

two different scenarios;

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロン ・聞 と ・ ヨ と ・ ヨ と

æ.

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

two different scenarios;

• unloaded and unshielded 8-leg low-pass birdcage coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

two different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 16-leg high-pass birdcage coil

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

two different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 16-leg high-pass birdcage coil

observed electromagnetic variables

→ ∃ > < ∃ >

< /₽ ▶

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

two different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 16-leg high-pass birdcage coil

observed electromagnetic variables

• H^+ at these resonant modes

< 🗇 🕨

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results

two different scenarios;

- unloaded and unshielded 8-leg low-pass birdcage coil
- unloaded and shielded 16-leg high-pass birdcage coil

observed electromagnetic variables

- *H*⁺ at these resonant modes
- surface current density

★ □ ► ★ □ ►

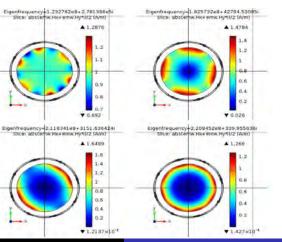
FEM Models of Birdcage Coil: Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC


 $\mathbf{H}^+ \rightarrow \text{for all resonant modes}$

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

COMSOL CONFERENCE EUROPE 2012

Simulation Results - 1st Scenario Unloaded and Unshielded 8-leg Low-pass BC

Necip Gurler

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 2nd Scenario Unloaded and shielded 16-leg High-pass BC

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 2nd Scenario Unloaded and shielded 16-leg High-pass BC

\mathbf{H}^+ and surface current densities \rightarrow for m=0 mode

Necip Gurler COMSOL CONFERENCE EUROPE 2012

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Simulation Results - 2nd Scenario Unloaded and shielded 16-leg High-pass BC

\mathbf{H}^+ and surface current densities \rightarrow for m=0 mode

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Outline

- IntroductionRF coils in MRI
 - RF birdcade coil
- Design and simulation of RF bird

2 Motivation

- Review of previous studies
- Problem definition
- Our work

Methods

- FEM Models of Birdcage Coils
- Frequency Domain Analysis
- Eigenfrequency Analysis
- Software Tool
- **Experimental Result**

< □ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Software Tool for Designing and Simulating a Birdcage Coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Software Tool for Designing and Simulating a Birdcage Coil

PURPOSE:

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Software Tool for Designing and Simulating a Birdcage Coil

PURPOSE:

 To provide convenience for the coil designers and the researchers in the field of MRI

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< ロ > < 同 > < 回 > < 回 > .

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Software Tool for Designing and Simulating a Birdcage Coil

PURPOSE:

 To provide convenience for the coil designers and the researchers in the field of MRI to use the proposed simulation methods easily and according to the parameters they specify

< ロ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Software Tool for Designing and Simulating a Birdcage Coil

PURPOSE:

 To provide convenience for the coil designers and the researchers in the field of MRI to use the proposed simulation methods easily and according to the parameters they specify

developed software tool

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ 戸 ト ・ ヨ ト ・ ヨ ト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Software Tool for Designing and Simulating a Birdcage Coil

PURPOSE:

 To provide convenience for the coil designers and the researchers in the field of MRI to use the proposed simulation methods easily and according to the parameters they specify

developed software tool

• FEM based Frequency Domain and Eigenfrequency Analysis Tool (FEM-FDA-EFAT)

< ロ > < 同 > < 回 > < 回 >

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

developed in MATLAB

< ロ > < 同 > < 回 > < 回 > .

э

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)

→ ∃ > < ∃ >

< 一 →

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server
 - modeling the coil geometry

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server
 - modeling the coil geometry
 - adding physics and boundary condition

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server
 - modeling the coil geometry
 - adding physics and boundary condition
 - generating mesh for the model

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server
 - modeling the coil geometry
 - adding physics and boundary condition
 - generating mesh for the model
 - adding study and solver sequence

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server
 - modeling the coil geometry
 - adding physics and boundary condition
 - generating mesh for the model
 - adding study and solver sequence
 - computing the solutions

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

Properties of the sofware tool

- developed in MATLAB
- has graphical-user-interface (GUI)
- makes all design and simulation steps according to the user-specified parameters by connecting to the COMSOL Multiphysics server
 - modeling the coil geometry
 - adding physics and boundary condition
 - generating mesh for the model
 - adding study and solver sequence
 - computing the solutions
- when the computation is finished, results can be observed in COMSOL Multiphysics

< ロ > < 同 > < 回 > < 回 > .

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

FEM-FDA-EFAT

Necip Gurler COMSOL CONFERENCE EUROPE 2012

ヘロト 人間 とくほ とくほ とう

æ

FEM Models of Birdcage Coils Frequency Domain Analysis Eigenfrequency Analysis Software Tool

FEM-FDA-EFAT

		Circular Birdcage Coil v4.0 Design and Simulate	Default Values
Design Parameters		Simulation Parameters Study Frequency Domain Analysis Start frequency 1236 Hz Stop frequency 1232e6 Hz	Eigenfrequency Analysis Number of freq. Search freq.
Coil radius Leg width Leg length	0.05 meter 0.015 meter 0.1155 meter	Step frequency 1e5 Hz Domain/Boundary Condition	Excitation OLinear Ouddrature
End ring width End ring length Desired resonance frequency RE shield radius	0.015 meter 0.03927 meter 123.2e6 Hz	Mesh Size Extremely fine Results	Simulate
Design		Capacitor Value Use calculated capacitor value Use different capacitor value	1845e-011 F Simulation is finished. Elepsed time: 229.867 seconds

Necip Gurler

COMSOL CONFERENCE EUROPE 2012

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool

< 🗇 ▶

Handmade Low-pass Birdcage Coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

|★ 豊 ▶ | ★ 豊 ▶ |

合 ▶

æ

Handmade Low-pass Birdcage Coil

 8-leg low-pass birdcage coil is constructed on plexiglass tube

Necip Gurler COMSOL CONFERENCE EUROPE 2012

伺 とくき とくき とう

Handmade Low-pass Birdcage Coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Experimental Results and Comparison with Numerical Analyses

for the resonant modes

Necip Gurler COMSOL CONFERENCE EUROPE 2012

合 ▶

Experimental Results and Comparison with Numerical Analyses

for the resonant modes

Necip Gurler COMSOL CONFERENCE EUROPE 2012

프 🖌 🛪 프 🕨

A 10

Experimental Results and Comparison with Numerical Analyses

for the resonant modes

• S₁₁ of the coil for five different capacitance values

Necip Gurler COMSOL CONFERENCE EUROPE 2012

伺 とくき とくきと

Experimental Results and Comparison with Numerical Analyses

for the resonant modes

- S₁₁ of the coil for five different capacitance values
- compare the measured resonant modes

< 同 > < 回 > < 回 >

Experimental Results and Comparison with Numerical Analyses

for the resonant modes

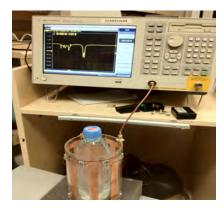
- S₁₁ of the coil for five different capacitance values
- compare the measured resonant modes
 - Jin's software tool, MRIEM

< 同 > < 回 > < 回 >

Experimental Results and Comparison with Numerical Analyses

for the resonant modes

- S₁₁ of the coil for five different capacitance values
- compare the measured resonant modes
 - Jin's software tool, MRIEM
 - Our software tool, FEM-EFAT


伺 とくき とくきと

Experimental Results and Comparison with Numerical Analyses

Necip Gurler COMSOL CONFERENCE EUROPE 2012

合 ▶

Experimental Results and Comparison with Numerical Analyses

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Necip Gurler COMSOL CONFERENCE EUROPE 2012

프 🖌 🔺 프 🕨

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

used capacitance values

47 pF, 10 pF, 3.3 pF, 1.8 pF, 1 pF

Necip Gurler COMSOL CONFERENCE EUROPE 2012

프 🖌 🔺 프 🕨

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Results for 47pF

Modes	Measured (MHz)	MRIEM (MHz)	FEM-EFAT (MHz)
m=1	60.75	67.46	59.1
m=2	85.88	90.64	87.22
m=3	93.38	102.2	101.1
m=4	102.8	-	105.4

Necip Gurler COMSOL CONFERENCE EUROPE 2012

프 🖌 🔺 프 🕨

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Results for 10pF

Modes	Measured (MHz)	MRIEM (MHz)	FEM-EFAT (MHz)
m=1	122.11	146.25	124.76
m=2	196.48	196.51	184.80
m=3	208.54	221.57	214.41
m=4	214.97	-	223.54

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Results for 3.3pF

Modes	Measured (MHz)	MRIEM (MHz)	FEM-EFAT (MHz)
m=1	211.3	254.59	205.37
m=2	306.3	342.08	306.62
m=3	330.0	385.71	356.47
m=4	345.0	-	371.75

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Results for 1.8pF

Modes	Measured (MHz)	MRIEM (MHz)	FEM-EFAT (MHz)
m=1	255.2	344.71	260.62
m=2	382.0	463.19	392.18
m=3	417.0	522.26	456.8
m=4	441.5	-	476.5

Necip Gurler COMSOL CONFERENCE EUROPE 2012

.⊒ . ▶

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Results for 1pF

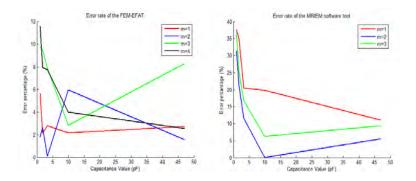
Modes	Measured (MHz)	MRIEM (MHz)	FEM-EFAT (MHz)
m=1	335.7	462.48	316.85
m=2	473.1	621.42	481.6
m=3	512.3	700.68	562.24
m=4	525.9	-	586.63

Necip Gurler COMSOL CONFERENCE EUROPE 2012

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Percentage error

Error rate (%) = 100 ×
$$\left| \frac{f_{meas} - f_{calc}}{f_{meas}} \right|$$


Necip Gurler COMSOL CONFERENCE EUROPE 2012

伺 とく ヨ とく ヨ とう

э

Measured and Calculated Resonant Modes Results for Low-pass Birdcage Coil

Percentage error rate for FEM-EFAT and MRIEM

200

Outline

- Introduction
 - RF coils in MRI
 - RF birdcage coils
 - Design and simulation of RF birdcage coils

2 Motivation

- Review of previous studies
- Problem definition
- Our work
- 3 Methods
 - FEM Models of Birdcage Coils
 - Frequency Domain Analysis
 - Eigenfrequency Analysis
 - Software Tool
 - Experimental Results

5 Conclusion

→ ∃ > < ∃ >

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロン ・聞と ・ヨン・ヨン

æ

We have proposed two FEM based simulation methods using developed FEM models of low-pass and high-pass birdcage coils in COMSOL Multiphysics:

Necip Gurler COMSOL CONFERENCE EUROPE 2012

We have proposed two FEM based simulation methods using developed FEM models of low-pass and high-pass birdcage coils in COMSOL Multiphysics:

Frequency Domain Analysis

Necip Gurler COMSOL CONFERENCE EUROPE 2012

→ ∃ > < ∃ >

A 10

We have proposed two FEM based simulation methods using developed FEM models of low-pass and high-pass birdcage coils in COMSOL Multiphysics:

- Frequency Domain Analysis
 - electromagnetic fields solutions of a birdcage coil for any scenario

Necip Gurler COMSOL CONFERENCE EUROPE 2012

< 同 > < 回 > < 回 >

We have proposed two FEM based simulation methods using developed FEM models of low-pass and high-pass birdcage coils in COMSOL Multiphysics:

- Frequency Domain Analysis
 - electromagnetic fields solutions of a birdcage coil for any scenario
- Eigenfrequency Analysis

伺 とくき とくきと

We have proposed two FEM based simulation methods using developed FEM models of low-pass and high-pass birdcage coils in COMSOL Multiphysics:

- Frequency Domain Analysis
 - electromagnetic fields solutions of a birdcage coil for any scenario
- Eigenfrequency Analysis
 - resonant modes of a birdcage coil and electromagnetic field solutions at these resonant modes

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロン ・聞と ・ヨン・ヨン

æ

 A software tool is developed to make these two simulation methods easily and according to the user-specified parameters

< 一型 ▶

- A software tool is developed to make these two simulation methods easily and according to the user-specified parameters
- Experimental results show that results of the proposed software tool is more accurate than the results of software tool which uses lumped circuit element model

Necip Gurler COMSOL CONFERENCE EUROPE 2012

(*) * (*) *)

- A software tool is developed to make these two simulation methods easily and according to the user-specified parameters
- Experimental results show that results of the proposed software tool is more accurate than the results of software tool which uses lumped circuit element model
- These methods can be adapted to design and simulate other MRI RF coils

(*) * (*) *)

One more thing...

Necip Gurler COMSOL CONFERENCE EUROPE 2012

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

One more thing...

Necip Gurler COMSOL CONFERENCE EUROPE 2012

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ