

Optimizing the Design of Polymer Based Unimorph Actuator using COMSOL Multiphysics

Vineet Tiwari, Rashiya Sharma, R. K. Dwivedi and Geetika Srivastava

Department of Physics and Materials Science & Engineering Jaypee Institute of Information Technology Noida-201307

Outline

- Why polymer based unimorph actuator.
- Our unimorph actuator.
- Governing Equations.
- Tools used for simulation.
- Results and discussion.
- Conclusion.

Polymer Based Unimorph Actuator

- Compared to bimorph and multilayer structures, simple structure and easy assembly.
- Aeronautical applications flexibility, durability and light weight material with high degree of robustness.
 - piezoelectric ceramics brittle and heavier
 - Solution- piezoelectric polymers. PVDF is the most preferred polymer.
- Tip deflection depends on its geometrical dimensions and material properties etc. need to optimize the design parameters.

Piezoelectric Unimorph configuration taken.

Governing equations

- Converse piezoelectric effect:

- Mechanical behaviour of rectangular beam made up of some elastic material say (Steel/ Polysilicon/ Si₃N₄):

Tools used for computation

- Comsol Multiphysics Version 4.2.
- An analytical relation for the deflection of a piezoelectric Unimorph cantilever Beam:

$$\delta = \frac{3L^2}{2t} \cdot \frac{2AB(1+B)^2}{A^2B^4 + 2A(2B+3B^2+2B^3)+1} \cdot d_{31}E_3$$

Where A: Ratio of elastic modulus of elastic material over elastic modulus of piezoelectric material

B: Ratio of thickness of elastic material over thickness of piezoelectric material.

L: Length of the cantilever beam.

d₃₁: Piezoelectric coupling coefficient.

 E_3 : Applied electric field in 3^{rd} direction

Variation in the tip deflection of the beam with the length of the PVDF layer

Increase:

Load and length effect

Saturation:

Converse piezoelectric effect =>strain along X direction.

Elastic behaviour of substrate =>bending deformation along Z direction.

Variation in the tip deflection of the beam with the width of cantilever

Variation in the tip deflection of the beam with the thickness of PVDF layer

Increase:

- Strain \(\mathcal{\alpha}\) Electric field \(\mathcal{\alpha}\) thickness(\(\mathcal{\beta}\))

- Tip deflection
$$\alpha$$
 $\frac{1}{I_{\text{rec} \tan gular}}$

rectan gular (1) Thickness (1)

Variation in the tip deflection of the beam with the thickness of steel layer

Increase:

-Tip deflection α $\frac{1}{I_{\text{rec tan gular}}}$

I_{rec tan gular} C Thickness (1)

Decrease:

-Tip deflection **○** Load

Load **A**Thickness(**1**)

-Less bending in third direction due to thin elastic layer.

Variation in the tip deflection of the beam with thickness for three different materials

Anamoly:

- -Tip deflection ♥ elastic modulus. Elastic modulus: Si3N4>Steel>Polysilicon.
- -For thin elastic layer elastic modulus of piezoelectric layer (<elastic layer) is also going to decide the Unimorph bending.

Variation in the tip deflection of the unimorph cantilever beam with dimension for three different materials using some analytical relations.

Conclusions

-Length of the piezoelectric layer >= length of nonpiezoelectric elastic layer.

-PVDF thickness more effective design parameter as compared to thickness of passive layer. The lesser the thickness of the piezoelectric layer, higher is the deflection.

-Tip displacement for Si₃N₄ layer is maximum as compared to polysilicon and stainless steel being chosen as passive layer.

References:

- [1] C Huang, Y Y Lin and T A Tang, "Study on the tip-deflection of a piezoelectric bimorph cantilever in the static state", Journal of micromechanics and microengeeniering, vol.14, pp.530-534, 2004.
- [2] Qing-Ming Wang a," Performance analysis of piezoelectric cantilever bending Actuators", Ferroelectrics, vol. 215, pp. 187-273, 1998.
- [3] Yao Fu,"Design of a Hybrid Magnetic and Piezoelectric Polymer Microactuator", Ph.D thesis ,Swinburne university of technology,hawthorn, victoria australia ,december, 2005.
- [4] "Introduction to COMSOL Multiphysics", COMSOL, 2010.
- [5] J. G. Smits, S.I. Dalke, and T.K.Cooney, "The constituent equations of piezoelectric bimorphs," Sensors and Actuators A, vol. 28, pp.41-61, 1991.
- [6]L.S.Negi,Strength of materials,92-124. Tata McGraw-hill, New delhi (2008)

Acknowledgements

The authors want to thank National Program on Micro and Smart Systems group (NPMASS) for providing COMSOL Multiphysics software for academic use and for its help and support.

THANK YOU