
Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge

Web Based 3D Visualization for COMSOL Multiphysics®

M. Jüttner*1, S. Grabmaier1, W. M. Rucker1
1University of Stuttgart – Institute for Theory of Electrical Engineering
*Corresponding author: Pfaffenwaldring 47, 70569 Stuttgart, Germany, ite@ite.uni-stuttgart.de

Abstract: A web based visualization solution for

three dimensional simulation results of COMSOL

Multiphysics is described. With it, mobile clients

with low bandwidth as well as desktop computers

with high bandwidth connections get able to show

simulation results without the need of installing

specialized software. To do so, a modern web

browser is required. Both touch gestures and

common input techniques supports real time

interaction with the visualization. The required

web application, the web server and the data

evaluation at a COMSOL Server is described.

Details about data handling and rendering are also

discussed. The performance of the system is

shown for different computer systems and

different simulation results.

Keywords: HTML5, Mobile Clients,

Visualization, WebGL, web sockets.

1. Introduction

An important point for interpreting results of

numerical simulations is the visualization. Same holds

for transferring knowledge about hardly conceivable

relations. So especially in the fields of teaching, product

or research presentations and in future multiphysics

problem solving environments [1] an easily available

and lightweight visualization solution is expected.

Mobile devices and their connection to the internet

represents a chance to provide a solution for this needs.

While modern internet clients run on different

operation systems, multi-platform development is

necessary. For small internet applications, a

combination of the Hypertext Markup Language

(HTML), the Cascading Style Sheets CSS and

JavaScript represents an open standard for developing

and porting the developed applications to different

platforms. The performance of these internet

applications increases with new introduced web

technologies like HTML5 [2]. Nowadays even native

HTML applications are possible [3]. Although the final

specification of HTML5 and related web technologies

are not released yet, common web browser support

them. So web pages even changes from former static

documents to web based applications. As prerequisite a

powerful 3D Web based Graphics Library (WebGL)

was needed. WebGL offers a JavaScript APplication

Interface (API) for graphical programming. It allows

web application to take advantages of the local graphic

processing unit (GPU) [4].

In the following section, the outlined internet

technologies are used to create a system, able to

display COMSOL’s 3D visualization plots. The

system setup as well as the required components

are described. Section 3 shows the performance of

the system on examples out of the COMSOL

Model Library and on both, mobile and desktop

clients. A conclusion is given in section 4.

2. Visualization system

To show results of a simulation within a

client’s web browser the components shown in

fig. 1 are needed.

SFTP

HTTP,

web

sockets

Web client

HTML5/WebGL

Web Server

based on Node.js

Java Application

model conversion

data upload
COMSOL Model Java API

COMSOL Server

Figure 1. System architecture

The web client represents the user interface.

Here the visualization of the results are displayed

and user input is generated. Because of different

operating systems and individually chosen web

browsers at the web client, a universal interface is

needed. This interface is build using web sockets.

It provides a bidirectional communication with a

web server to allow a dynamic reload of new

information. The web server provides the web

application for visualization. Here Node.js is used

as web server providing the web application and

all data necessary for visualization. It is based on

Google’s JavaScript Runtime Environment. A

package manager and free available development

tools make it easy to handle. To get the required

Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge

data out of a COMSOL Server and into the web

server, a java application is created. Using the

COMSOL Java API (CJAPI) this software

extracts necessary data and commit it via a Secure

File Transfer Protocol (SFTP) to the web server.

Currently the connection between the web server

and the java application is unidirectional.

Section 4 outlines additional features permitted by

a bidirectional connection. The following

chapters describe relevant details for

implementing this system.

2.1. Data extraction and conversion

The CJAPI provides direct access to the

model object, containing all algorithms and data

structures for a COMSOL model. The structure of

the COMSOL model and especially the plot data

is used in wide parts of the java application and

the web application. The structure consists of two

data elements. One binary element containing the

raw data and one text based file containing all

meta information about the plot data. The binary

files structure is shown in fig. 2.

Data segment 1: vertices 0 - 65k

Vertex data
(Float32)

Attribute data
(Float32)

Indices data
(Uint16)

Figure 2. Structure of the binary plot data

Each data segment contains three different

kinds of value. The vertex data containing all

coordinates for visualization. Optional attributes

for the corresponding vertices are stored in the

next segment. The mapping between the vertex

data and primitive elements (lines, triangles) are

stored at the indices data segment. Since WebGL

is used for visualization and it only supports the

Uint16 data type for indices, data is split into

segments of 65k vertices. WebGL also requires a

draw call for each data segment. Using JavaScript

as a well supported programming language at the

Node.js web server [5], the eXtensible Markup

Language (XML) based meta information file was

converted to a JavaScript Object Notation (JSON)

file. This allows a native handling of the models

meta data within the web server.

2.2. Web and data server

To use only standardized web technology at

the web server, SFTP is used for data exchange

with the java application. Between the web client

and the web server, the Hyper Text Transfer

Protocol (HTTP) and web sockets are used. Web

sockets allow upgrading the HTTP to a

bidirectional connection. In contrast to the default

Base64 encoded HTTP, web sockets directly

transmits binary data. The transmission of type

array buffer objects or binary large objects is

possible. Using web sockets fundamentally

increases the performance of the data transfer [6].

This is of special interest, because we deliver

visualization data. There is no need to exchange

the numerical results. The final web page is built

at the client’s web browser. This results in less

logic within the web server but high input/output

performance and scalability. An impression about

the average data size of numerical plots for

examples from the COMSOL Model Library is

given in tab. 1.

Table 1. Data size

Model Plot type vertices Size

Inductive Heating Surface 10730 290 kB

Power Transistor Surface 37108 898 kB

Power Transistor Arrow volume 5079 120 kB

The process of establishing a connection

between the web client and the web server is

shown in fig. 3.

Web Client

 Start application
 open web socket

 request plot
information

 render & refresh

Web Server

Web application

files (HTML)

HTTP

Data description

(JSON, binary)

web

 socket

Figure 3. Data transfer between web server and client

First, the web server transfers the web

application via HTTP to the web client. Then, the

application opens and a web socket connection

between the client and the server is established.

From now on, all communication is done via this

web socket. Two types of messages are

implemented. The meta information exchange via

JSON objects and the binary data as array buffer

objects. Here array buffer objects represent the

top class of typed arrays. Typed arrays allow

different data types for numbers and native array

Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge

operations. Benchmarks have shown that the

adequate usage of typed arrays leads to a better

performance [7]. Typed arrays are also requested

by the WebGL API to create buffer object for

uploading data to the GPU.

2.3. Web Application

The purpose of the web application is the

visualization of 3D data from COMSOL

Multiphysics. To show a good representation of

the results a fine granular mesh is needed.

Especially for streamlines, isolines or isosurfaces

plots have to look smooth. Therefore, a high

density of vertices is require. This leads to a huge

and strongly model and plot dependent amount of

data that needs to be processed even for simple 3D

visualizations. For example, the visualization of

the surface temperature of the “Power Transistor”

(COMSOL Model Library) consists of more than

30,000 vertices. Some of the vertices have

geometrical meaning. Most represents

coordinates for the visualization of the

temperature values. To avoid a reimplementation

of simulation result post processing, the renderer

attached to COMSOL is replaced by a data

interface to the web server. From the web server,

the visualization data is forwarded to a web client

and finally rendered in the web browser. The

advantage by reusing COMSOL’s data structure

is the compatibility of all different plot types and

the possible combination out of them. The

extraction of the relevant plot data is described in

section 2.1.

Rendering the data is done using WebGL, a

strict subset of the Open Graphics Library

(OpenGL) 2.0. Additionally, there is also

mapping to Microsoft DirectX 9 and 11. In that

way lots of devices are supported. WebGL uses

the same render pipeline as OpenGL 2.0. Figure 4

shows the WebGL graphic pipeline with its

programmable vertex and fragment shader.

Figure 4. Simplified rendering pipeline

Blue marked levels are programmed within

the OpenGL Shading Language (GLSL). So data

intensive structures can be handled by suitable

and individually optimized developed shader

programs. Using the pipeline all plots within

COMSOL get available. To achieve good

performance and make the application running on

most devices, non-essential 3D effects for

visualization are neglected.

The generic structure of the COMSOL

visualization plots allows considering only a few

different options while developing the web

application render program. Tab. 2 shows the data

structure for three different kinds of plot types.

Table 2. Different plot types

(nEle: number of elements, nVert: number of vertices)

Plot type
Element

dimension

Attribute

type

Attribute

dimension

Surface 3 x nEle colour 1 x nVert

Isolines 2 x nEle [radius] [1 x nVert]

Arrow Volume null vector 3 x nVert

For example, surface plots consist of triangles

with one scalar value for each vertex. Mapping the

values to a colour table (temperature, traffic light,

etc.) a corresponding 1D texture is created. It

contains 4 to 16 entries. The vertex shader scales

the numerical value to values between 0.0 and 1.0.

This value is used in the fragment shader to map

the corresponding colour. The classical pong

shader is implemented to achieve diffuse and

spectral light effects. For lightning effects the

normal vectors in each vertex is calculated. The

render engine cyclically checks (every 16ms) if a

user interaction has happened and relaunches a

render process. Provided user interactions are

translating, rotating and zooming. They are

supported by mouse and touch gestures.

Plots like arrow volumes require additional

calculation before visualization. Rendering arrow

volumes, a vertex based arrow has to be generated

for each value. Visualizing streamlines, the

required three dimensional tubes are build using

vertices and a width for the tubes. To avoid a

separate draw call for each element, the elements

are grouped. The required calculations are done

using web workers, a sort of multithreading. They

are used for calculating intensive data operations.

Web workers are implemented on thread level and

offer communication by message passing. In that

way, blocking of the main thread and the user

interface is avoided. The calculation operations

can either been processed at the web server or at

the web client. In case of processing them at the

web server, lots of performance is available and

the operations are performed only once. As

Vertex
Shader

Rasteriz
ation

Fragment
Shader

Blend
Frame
buffer

Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge

drawback, interaction or manual scaling is not

possible. Additionally a higher data volume is

transmitted. Here, the calculation of the elements

is done at the web client using web worker and

typed arrays. The calculation is done without

troubling slowdown. Figure 5 shows the visuali-

sation of an arrow surface and a surface plot.

Figure 5. Screenshot of the web application.

3. Benchmarks

A first benchmark compares different

programming languages by calculating the size,

the orientation and the position for 1.5 ⋅ 106

arrows. Each arrow is built of 120 vertices based

on vector data exported from COMSOL. Table 3

show the results for test system a with an

Intel Core 2 Quad Central Processing Unit

(CPU), a NVidia Quadro 600 GPU, Microsoft

Windows 8, a screen resolution of 1680 ×
1050 pixel, Visual Studio V.12 as C++ compiler

with the -O2 flag, Java SE 1.7, HotSpot 24.51,

Chrome: V 32.0 - 32 Bit and Firefox: V 27.0 - 32

Bit. Automatic clean up options like the garbage

collector in java has been supressed.

Table 3. Benchmark JavaScript (JS)

(° using default arrays, * using typed arrays)

Environment Duration Memory

JS Firefox° >5000 ms 1125.0 MB

JS Firefox* 2342 ms 402.4 MB

JS Chrome* 2454 ms 414.4 MB

Java 64 Bit* 1561 ms 421.0 MB

C++ 64 Bit* 1307 ms 396.5 MB

While programming languages like Java or C++ are

still faster, the usage of typed array boost up the

performance of JavaScript. The just in time compiler

for JavaScript benefits from the high number of

iteration over same code. The default JavaScript arrays

are not suitable for such big data size. The reasons are

no static memory allocation and Float64 as the only

type for numbers. Using typed arrays reduces the

memory consumptions to a size comparable to Java and

C++.

Another benchmark shows the three

dimensional visualization performance on

different devices. Here system a is used again.

System b uses is also a desktop system but without

an additional graphics card. It uses an Intel Core

2 Duo CPU, an Intel X3100 GPU, a screen

resolution of 1400 × 1050 pixel, Microsoft

Windows 7 with service pack 1 and

Chrome V 32.0 - 32 Bit and Firefox V 27.0 –

32 Bit as web browsers. System c runs on Android

4.2.2 with a screen resolution of 1280 ×
696 pixel, a Mediatek MT8125 CPU and a

PowerVR SGX544 GPU. Here the achieved

frame rate is measured in Frames per

Second (FPS). As reference model, the COMSOL

example “Power Transistor” was used and some

predefined interaction were processed too.

Table 4 shows the results measured by the

JavaScript performance monitor stat.js.

Table 4: Benchmark 3D performance

System FPS

System a: Disabled GPU 11.7

System a: Enabled GPU 58.5

System b: 15.4

System c: 44.5

The first two results show that hardware

acceleration by GPU is indispensable for 3D

visualization. The CPU and the GPU of system c

is used in smartphones and tablet computers. It

also show a good performance. So running the

introduced web application on mobile devices is

possible. In the daily use, the frame rate is not as

noticeable as during the measurements. The

application is built to visualize simulation results.

In that way slow frame rates only leads to a slow

rotating or zooming process.

Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge

4. Conclusion

The visualization of COMSOL Multiphysics

3D simulation results by using standardized web

technology has been shown. Additionally details

for implementation were given. The visualization

gets possible using a java application extracting

rendering data from COMSOL Multiphysics and

stores them on a web server. The web server hosts

a web application. This web application

establishes a bidirectional connection between the

web server and a web client and allows a faster

data transmission compared to HTTP. The

connection is needed to transfer the rendering data

to a web client. The necessary bandwidth is small,

so actual mobile devices can handle it. At the web

application, WebGL is used. It achieves a good

visualization performance. This has been shown

during a benchmark. Interaction with the

visualization is possible by touch gestures and

ordinary input techniques. To allow a user to

recalculate or modify the simulation it is possible

to establish a bidirectional connection between

the web server and the COMSOL server by using

the COMSOL API. In that case, security issues

must be considered to provide a reliable system.

5. References

1. M. Juettner, A. Buchau, A. Faul, W. M.

Rucker and P. Goehner, “Segregated Parallel

and Distributed Solution of Multiphysics

Problems using Software Agents,”

Conference on Electromagnetic Field

Computation, 2014.

2. R. C. Hoetzlein, “Graphics performance in

rich internet applications,” Computer

Graphics and Applications, pp. 98-104, 2012.

3. J. M. Wargo, Apache Cordova 3

Programming, Addison-Wesley, 2013.

4. P. Cozzi and C. Riccio, OpenGL Insights,

CRC Press, 2012.

5. S. Tilkov and S. Vinoski, “Using JavaScript

to build high-performance network

programs,” IEEE Internet Computing,

vol. 14, no. 6, pp. 80-83, 2010.

6. P. Lubbers and F. Greco, “HTML5 web

sockets: A quantum leap in scalability for the

web,” SOA World Magazine , 2010.

7. S. Herhut, R. L. Hudson, T. Shpeisman and J.

Sreeram, “Parallel programming for the

web,” Conference on Hot Topics in

Parallelism, 2012.

