
Excerpt from the Proceedings of the 2014 COMSOL Conference in Cambridge 

MEMS Pirani Sensor for Pressure Measurements in the Fine- and High-

Vacuum Range 
 

M. Grau
*1,2

, F. Völklein
1
, A. Meier

1
, C. Kunz

1
, and P. Woias

2
 

1
RheinMain University of Applied Sciences (Institute for Microtechnologies), 

2
University of Freiburg 

(Department of Microsystems Engineering) 
*Corresponding author: Am Brückweg 26,65428 Rüsselsheim, Germany, mario.grau@hs-rm.de 

 

 

Abstract: A high performance MEMS Pirani 

sensor, called VAC_03, was designed and 

optimized by analytics [1]. Due to the fact that 

this MEMS Pirani sensor is a 3D-Object, the 

calculation of the thermal radiation by simplified 

analytical models is very limited. As the 

radiation behavior in the system is, beside the 

solid thermal conductance, responsible for the 

detection limit of such thermal conductivity 

vacuum gauges, we switched to a FEM-Software 

for analyzing the actual 3D-geometry. This way 

all view factors of the interacting surfaces can be 

precisely calculated. Solid heat conduction is 

calculated straight forward by Fourier heat 

transfer. Gaseous heat flux calculation is based 

on analytical equations. The developed FEM-

Model represents the measurement performance 

of the sensor precisely. Hence, we use the model 

for further geometric optimization by 

systematically sweeping crucial parameters. This 

way we can approximate the gain in sensitivity 

related to the technological effort. 
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1. Introduction 
 

Pirani sensors are based on a heating and sensing 

element or a combined element as in this case. 

The electrical heating power is dissipated by 

solid head conduction, gaseous heat conduction 

and by thermal radiation. Only the gaseous heat 

losses are pressure-dependent. However, for 

some electrical configurations the working 

temperature of the heating element is a function 

of pressure p. Hence, the radiation losses vary 

with the pressure p as well as they strongly 

depend on the temperature difference between 

heated element and environment. The analytical 

model did not show a sufficient precision in 

modeling the radiation in the system, so we 

switched to COMSOL Multiphysics. 

 

2. Sensor Design 
 

We use a meander shaped Ni resistor (R(T)) 

patterned onto a membrane, which is suspended 

by four 300 nm thin beams (see Figure 1). 

Membrane and beams consist of a stress 

compensated low-pressure chemical vapor 

deposition (LPCVD) silicon nitride (Si3N4). The 

membrane is suspended from a Si chip-rim 

above an etch groove. Onto the chip rim we 

pattern an additional Ni resistor (RK) that shows 

the same electrical resistance, line width and 

temperature coefficient of resistance (TCR). On 

top of the chip rim we placed a silicon 

microbridge (Si-mb). This Si-mb has two 

functions. First, it is working as a radiation 

shield; secondly it acts as a nearby heat sink to 

increase the gaseous thermal conductance (see 

Figure 2). 

 
Figure 1. Schematic top view of the MEMS Pirani 

Sensor VAC_03.  

 

The chip’s main dimensions can be reviewed in 

Table 1.  

 

3. Thermal Analysis 
 

This chip design allows us to describe the 

sensor’s performance by an analytical model, 

which is based on thermal conductances. In fact, 
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we used this model for designing and optimizing 

the sensor. This section summarizes the basic 

assumptions and equations used for modeling. 

We assume that the membrane area A is heated 

homogenously. A temperature gradient can be 

found on each of the four beams only. For 

calculating the gaseous heat conductance, we 

work with two cylindrical shaped gas volumes 

below and above the membrane with the same 

(base) area A and a height d1 and d2, being the 

distances to the heat sinks, respectively. With 

this simplification an error is induced, which we 

compensate by a correction factor that is 

multiplied with the gaseous thermal 

conductance. The radiative heat losses are 

approximated by the Stefan-Boltzmann law as 

well as the Kirchhoff’s law of radiation. We only 

take the reflecting surfaces below and above 

(radiation shield and transistor-outline header) 

into account.  

As the model is a thermal conductance based 

one, the following equation describes the main 

relations: 

 

                   

 

in a simple but sufficient way. T, T0 and N 

denote the membrane’s temperature, the heat 

sink’s as well as the ambient temperature and the 

electrical power used for heating the Ni resistor, 

respectively. The three conductances Gc, Gr and 

Gg represent the solid thermal conductance, the 

radiative thermal conductance and the gaseous 

thermal conductance. In Table 2 one can review 

the equations used to describe the thermal 

conductances in this model. 

 
Figure 2. Schematic cross section of the MEMS 

Pirani Sensor.  

 

The solid thermal conductance Gc consists of 

two terms, one respecting the four beams, the 

second one respecting the two parts of the Ni 

resistor, which enters and leaves the membrane 

via two of the four beams. The radiation losses 

and therefore Gr depends on the temperature 

difference between membrane and environment, 

the area of the membrane A and the emissivity of 

the membrane’s surface ε (see Table 2). The 

gaseous conductance Gg(p) depends on gas 

specific properties (e.g. the accommodation 

coefficient a and the mean free path   ̅   of the 

gas molecules). According to Wutz[2] the 

thermal conductivity λ of gases can be 

approximated in all pressure regimes by the 

following equation: 
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For powering the sensor, we use a Wheatstone 

bridge circuit (see Figure 3). The electrical 

power N can be described by the resistor’s ratios 

and the bridge supply-voltage Ub (see Table 2). 

By using the expression for the thermal 

conductances and respecting the electrical power 

injected into the measuring resistor, one can 

approximate the temperature difference by 

iteration. This function T(p) can be transformed 

to a signal voltage U(p) by taking the electronic 

configuration into account.  

 
Figure 3. Schematic representation of the bridge 

circuit powering the MEMS Pirani Sensor.  

 

A simplified expression for U(p) is given by: 
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with β denoting the TCR of the nickel thin-film 

resistor. This equation implies a signal increase 

for higher membrane temperatures. But the 

sensors sensitivity is defined by dU/dp. From 

this it follows that if the temperature is increased, 

the absolute signal voltage rises, but the 

sensitivity decreases in the high-vacuum range. 

The reason for this is the strong temperature 

dependency of the radiative thermal conductance 

Gr. Gr and Gc dominate in the lower pressure 

range; hence both conductances have to be 

minimized. As one can see in Table 2, there are 
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material properties and geometric parameters 

inside the expressions. Many of these can be 

modified technologically. By performing 

parameter sweeps with COMSOL Multiphysics, 

we can optimize the increase in sensitivity 

compared to the technological effort needed. A 

more detailed description of this analytical 

model can be found in [1]. 

 

4. Use of COMSOL Multiphysics 

 

For creating the geometry of the sensor we used 

COMSOL’s Standard CAD-Module. The chip’s 

geometry is fully represented in 3D with exact 

physical dimensions. Most characteristic 

parameters can be changed without breaking the 

geometry or meshing sequence.  

 
Figure 4. 3D model of the MEMS Pirani Sensor 

VAC_03, Si-mb on top of the chip rim is represented 

semi-transparent, heat-flux gradients can only be 

found along the beams and in the gas volumes.  

 

All the main parts as the edge length of the 

membrane and beams, as well as the chip-rim 

dimensions can be swept. The remaining sizes 

are calculated out of these customized 

parameters. Even the distance between Si-mb 

and membrane as well as the thickness of beam 

and membrane are parameterized. This way we 

are able to study the impact of geometric design-

optimization on the sensor’s sensitivity.  

In order to keep the calculation time reasonable, 

we use the following assumptions and 

simplifications: 

 The meander is not geometrically 

represented. The membrane is defined 

as heat source. 

 There is no convection in the system. 

The gas volumes are of stationary kind. 

 Gas volumes are fully transparent to 

any kind of radiation. 

 The surface emissivities show no 

temperature dependency. 

 The 300 nm thin edges of membrane 

and beams are set up with adiabatic 

boundary-conditions. 

The first simplification can be done without 

hesitation due to the fact that we deposit an Au 

layer onto both sides of the membrane. This way 

we reduce the membranes emissivities ε, hence 

the radiation losses are decreased. Additionally, 

the Au layer generates a homogenous heat 

distribution throughout the membrane area. The 

second and third simplification is logical when 

using a solid body as gas volume with pressure-

dependent heat conductivity (we are using the 

equation of the analytic model, as it works for 

molecular, transitional and viscous pressure 

regimes). The last simplification has virtually no 

effect on the solution at all, as these surfaces are 

arbitrarily small compared to the remaining ones. 

All surfaces inside the cavity and between Si-mb 

and membrane are set up to surface-surface 

radiation. The outer surfaces radiate to the 

environment. 

 

The membrane is configured as heat source and 

the equation for the power N (see. Table 2) is 

used as value for the “total power” of the heat 

source. This way we take the electrical circuitry 

into account. 

 

In order to respect the Ni meander segment that 

is patterned onto two of the four beams we create 

a new thermal conductivity for those two beams. 

As the product of thickness d and thermal 

conductivity λ can be seen as constant (with 

thermal conductance in mind), we sum the dλ-

products of the Ni and the Si3N4, and divide this 

by the silicon nitride’s thickness. This way we 

get a new thermal conductivity, which respects 

the Ni conductor without actually having a 

geometric representation implemented into the 

model.  

 

5. Results 
 

In Figure 5 a chart shows a comparison 

between measured and simulated data. The T(p) 

function calculated by COMSOL is transformed 

by an analytic expression to the signal voltage 
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function U(p). The sophisticated model shows a 

good agreement in the high vacuum as well as in 

the lower fine-vacuum range. The most sensitive 

area, found in the range between 10
-4

 and 10
-2

 

Torr, slightly differs from the measurements. 

That is mainly caused by the unknown 

accommodation coefficient of the gas a. We used 

a value for nitrogen on smooth platinum surfaces 

(a=0.77, [2]), because there are no matching 

measurements for smooth Au surfaces found in 

literature.  

 
Figure 5. Signal voltage U(p) of simulated and 

measured data. 

 

The purpose of the VAC_03 is to show an 

increased performance in the high vacuum. 

Hence, we have to increase the gaseous thermal 

conductance as far as possible. The obvious way 

for doing this is an enlargement of membrane 

area A. An inevitable side-effect is that at the 

same time the radiation losses and solid thermal 

conductance (for a given chip-rim size) are 

increased as well.  

 
Figure 6. Signal voltage U(p) normalized to unity of 

simulated data for a parametric sweep of the 

membrane’s edge length. 

 

The decision for the 2000 µm edge length in 

combination with 746 µm long beams is based 

on analytics. An optimal ratio can be calculated 

(if all conductances are known precisely). The 

FEM results support that analytical optimum-

value in showing a decreasing improvement for 

constantly enlarging the membrane area. 

Although these results also indicate that a 

slightly larger membrane could still increase the 

sensor’s performance in the high-vacuum range 

(see Figure 6). However, by further increasing 

area A, we also reduce the sensitivity in the fine 

and rough vacuum. As the gas cooling is more 

efficient, the temperature increase we get for a 

given bridge supply-voltage is flattened.  A 

membrane size of 4 mm
2 

represents a good 

choice for a decent performance in the high and 

fine vacuum for a constant supply-voltage. In a 

similar way we studied the influence of several 

crucial parameters on the sensor performance 

(see Table 3) in specific pressure ranges. 

 

6. Conclusions 
 

FEM simulations are powerful tools for 

optimizing and developing complex prototypes 

of many kinds. In most cases, especially for 3D 

systems, analytical models have to be much 

simpler. As FEM-Software’s precision often 

scales with computational power, it is far more 

suited for designing and developing non-

idealized real-world prototypes. We designed a 

MEMS Pirani Sensor by analytics, called 

VAC_03. This sensor is optimized for the fine- 

and high-vacuum range. This optimization for 

the high vacuum is based on studying parasitic 

thermal conductances, meaning the solid and the 

radiative thermal conductances in this case. By 

using COMSOL Multiphysics, we are able to 

analyze the radiation behavior and the impact of 

design optimization much deeper as analytics 

would allow.  
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8. Appendix 
 

Table 1: Geometrical dimensions of VAC_03 
 

A 4 mm
2
 

w 3000 µm 

l 746 µm 

b 70 µm 

bNi 12 µm 

dNi 200 nm 

dM 300 nm 

 
Table 2: Analytic equations 
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Table 3: Parametric sweeps 

 

 Distances d1 and d2 

 Chip rim width 

 Beam length/width 

 Membrane size 

 Material properties (TCR, λ) 

 Bridge supply-voltage 
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