Using the **Application Builder** for Neutron Transport in **Discrete Ordinates**

C.J. Hurt

University of Tennessee Nuclear Engineering Department

(This material is based upon work supported under a Department of Energy Nuclear Energy University Programs Graduate Fellowship.)

> James D. Freels Oak Ridge National Laboratory, **Research Reactors Division**

THE UNIVERSITY of TENNESSEE

Presented at: COMSOL **CONFERENCE** 2015 BOSTON

KNOXVILLE

Presentation Outline

- Brief review of neutron transport
- Discrete ordinates methodology
- (Mis-)Use of the App. Builder
- Transport Benchmarks
 - Kobayashi benchmarks
 - Simple eigenvalue problems
- Results
- Conclusions

Neutron Transport

- Solve **7** independent variables:
 - Energy (1) E
 - Angle (2) Ω (ξ , ω)
 - Space (3) r (x,y,z)
 - Time (1) t
- Two primary methods:
 - Stochastic (MCNP5, SCALE's KENO, Serpent)
 - Deterministic (PARTISN, DORT, Attila)
- Nuclear Data

Discrete Ordinates Method

- **Spatial variables** finite difference, nodal, FEM
- Energy variables multigroup method, split problem into energy groups
- Angular variables <u>discrete</u> <u>directions</u> and quadrature approximation
- Gauss-Legendre quadrature for numerical integration over the angular domain:

$$\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

$$\phi_l^m(r,E) = \int_{4\pi} Y_{lm}(\widehat{\Omega}')\psi(r,E,\widehat{\Omega}')d\Omega' = \sum_{n=1}^N Y_{lm}(\widehat{\Omega}_n)\psi(r,E,\widehat{\Omega}_n)$$

Weak form application mode.

Multi-Group Neutron Transport Equation for Discrete Ordinates

Neutron Transport Equation – Streaming

• Neutron transport equation (simplified):

$$\Omega \cdot \nabla \psi + \sigma \psi = q$$

• "Streaming" terms:

Dimension	Spatial Var.	Angular Var.	$\Omega\cdotoldsymbol{ abla}\psi$
1D Cartesian	x	μ	$\mu \frac{\partial}{\partial x}$
2D Cartesian	x,y	μ, η	$\mu \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}$
3D Cartesian	x,y,z	μ,η,ξ	$\mu \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y} + \xi \frac{\partial}{\partial z}$
2D Cylindrical	ρ,Ζ	μ, ξ	$\frac{\mu}{\rho}\frac{\partial}{\partial\rho}\rho - \frac{1}{\rho}\frac{\partial}{\partial\omega}\eta + \xi\frac{\partial}{\partial z}$

 Curvilinear geometry: The variation of the angular coordinate system with position introduces a troublesome angular derivative or "directional transfer" term

Use of Application Builder to "streamline" physics building of G-by-N interfaces

Kobayashi Benchmark Problems 1 – 3

Difficult problems to assess:

 "...the accuracy of the flux distribution for systems which have void regions in a highly absorbing medium."

3 problems in two cases:

- Pure absorber
- ii. 50% scattering

Expected "ray effects" allowed unmitigated

Meshing, Solver and Problem Parameters

- Swept, mapped mesh everywhere
 - 2 cm mesh intervals, uniform
 - Mesh control domains utilized
- Each model set up with ~45-125k elements
 - ~14-28 million DOF \rightarrow 1-2 hr solution time
 - 1+ compute nodes, dual quad core processors, 128 GB RAM
- PARDISO for single node batch runs, MUMPS for batch runs across multiple nodes
- Fully-coupled or segregated solvers both used
 - Segregated slower convergence, offers "lower limit" feature and minimal memory savings
- Sn16 Level-Symmetric Quadrature
- Pn0 Scattering Order

Kobayashi Benchmark 3 Fluxes (w/o scattering)

National Laboratory

Kobayashi Benchmark 3 Fluxes (w/o scattering) 4.0E+00

Simple Eigenvalue Problems

HEU metal and water configurations, Sn2-4

k _{eff}				
KENOVa MG	0.2834			
COMSOL Sn2	0.2600	8.24%		
COMSOL Sn4	0.2705	4.56%		
COMSOL Sn6	0.2713	4.27%		
MCNP CE	0.2748			

Summary and Conclusions

- COMSOL-based neutron transport physics were developed for the discrete ordinates method
 - Variable dimension (1-D, 2-D, 2-D Axisymmetric, 3-D)
 - Variable energy group, angular quadrature
 - Neutron cross sections from SCALE, mixed in COMSOL
- New use of the COMSOL Application Builder for streamlining physics and model building in the weak form interface
- Results from compared benchmarks promising, primary limitation is computation time
- Future HFIR applications for neutron transport approaches in COMSOL has a variety of avenues

