Simulating the response of planar photonic structures under the strain of surface acoustic waves

Allan C. T. Covacevice and Odilon D. D. Couto Jr. odilon@ifi.unicamp.br

November 05-06, Curitiba

Outline

Motivation

Surface acoustic wave (SAW) model

- Calculation of acoustic and piezoelectric properties of solids
 - Bulk, films, layered structures

Planar optical microcavity (POMC) model

- Reflectance spectrum
- Electric field mode confinement
- Quality factor
- Photon dispersion

Acousto-optic modulation model

- SAW + POMC
- Strong light-phonon interaction
 - Appearance of new cavity resonances
 - Folding of the photon dispersion
 - Tuning of cavity resonances with SAW strain

Motivation

SAWs: elastic waves propagating on the surface of solids

Modulation of dielectric properties of solids Applications:

- Mobile, Wireless communication
- Sensors, filters, resonators....

Research

- Long range carrier, spin transport
- Tuning of energy levels in nanostructures

POMC: periodic array of refractive index

- Light confinement in the optical cavity
- Applications in photonics

Enhancement of interaction with light emitters

Light-matter coupling

- Strong coupling
 - Light-matter entangled states
- Weak coupling
 - Emission gain (QDs, nanowires, etc.)

SAWs on piezoelectric crystals

$$T_I = c_{II}S_I + d_{kI}E_k$$
 (3D Hooke's law + Converse piezoelectricity)

$$D_k = \epsilon_{kl} E_l + d_{kl} S_l$$
 (Dielectric field relation + Direct piezoelectricity)

 $(c_{IJ},\,d_{kI} ext{ and } \epsilon_{kl} ext{ are tensorial material properties})$

SAWs compose a set of solutions to the wave equation

$$\rho \frac{\partial^2 u_i}{\partial t^2} = c_{IJ} \left(\frac{\partial^2 u_l}{\partial x_j \partial x_k} \right) + d_{kI} \left(\frac{\partial^2 \phi}{\partial x_j \partial x_k} \right)$$

2D SAW model

Projection into a 2D "unit cell"

 $1 \mu m$

Interdigital transducers (IDTs)

- E-shaped aluminium electrodes
- Designed by lithography
- Wavelengths: $\lambda_{SAW} \sim 1 \rightarrow 20 \ \mu m$
- Frequencies: $f_{\rm SAW} \sim 0.1 \rightarrow 1 \ \rm GHz$
- $v_{SAW} = \lambda_{SAW} f_{SAW}$

Material	Geometry	Thickness (nm)
Air	Top cover	300
Aluminium	IDTs	200
ZnO/LiNbO ₃	Substrate	14000

7		
h		
	PML	
-	(Perfectly Matched Layer) $\lambda_{SAW} = 5.6 \ \mu \text{m}$	$\longrightarrow x_1$

Boundary Conditions		
V_{rf}	Applied Electric Potential	
V = 0	Ground	
$ \vec{u} = 0$	Fixed Constraint	
Continuity	Periodic Condition	

The SAW model: searching for Rayleigh SAWs

Frequency sweeps seeking for Rayleigh SAWs

The SAW model eigenmodes: ZnO (f_{saw}= 481 MHz)

Rayleigh SAW modes obtained

- Waves confined at the surface
- Exponential decay to the substrate
- u_1 and u_3
 - Elliptical displacement
 - Phase difference = $\pi/2$

Strain modulation

- Typical values: 10⁻⁵ to 10⁻³
- S₃₃: main responsible for the modulation of POMCs

The planar optical microcavity

The POMC model

Electromagnetic waves module

800nm POMC with Bragg mirrors composed of either ZnO/SiO₂

- SiO₂: good ref. index contrast with ZnO and LiNbO₃, compatible with CMOS
- Frequency Sweeps: obtain the spectral curves of reflectance
- Angle resolved reflectance: periodic port
- Eigenvalue solver: light electric field components
- Normalization factor: maximum electric field in the cavity

The planar optical microcavity model: results

800nm POMC

- Reflectance obtained
- PBG characterized
- Predicted resonance frequency 374.74 THz
- Electric field confinement
 - 1D and 2D plots

Very good agreement to the TM method

10

The planar optical microcavity model: results

This was observed for several q values....

and light incidence angles!

Using this model, we

- verified the unilateral optical confinement in the cavity
- \bigcirc characterized the reflectance and Q-factors for several q values (up to 10⁴ for \sim 10 BMs)
 - good agreement with experimental results (ZnO/SiO₂)

The acousto-optic modulation model

Consider the following setup

SAW strain induces regions of tension and compression

The effective changes induced to the optical thickness of the cavity is given by*

$$\frac{\Delta\omega}{\omega} = -\left[\frac{\Delta n_c}{n_c} + \frac{\Delta d_c}{d_c}\right] = -\left[\frac{\Delta n_c}{n_c} + S_{33}\right]$$
Acousto-optic SAW-induced thickness modulation

$$n = \sqrt{\epsilon}$$

The dielectric modulation follows from the tensorial equation:

$$\Delta \epsilon_{il} = -\epsilon_{ij} p_{ijmn} \epsilon_{kl} S_{mn}$$

where p_{ijmn} is the acousto-optic tensor.

The acousto-optic modulation model

Solid Mechanics + Electromagnetic waves modules

- Included a Sapphire substrate:
 - Transparent
 - Hard

Simulation steps:

- SAW modes evaluated
 - refractive index modulation
- 2. Optical modes evaluated

(a) ZnO/SiO₂

^{*}P. D. Batista et al. Applied Physics Letters, 92:133502, 2008.

The acousto-optic modulation model: optical modes

Normal light incidence

As strain is increased

- 2 resonances appear
- R₁ redshifts
- R₃ blueshifts

Near-resonance optical reflectance

Oblique light incidence

As incidence angle increases

- 3 resonances appear
- R₂ redshifts

Near-resonance optical reflectance

The acousto-optic modulation model: optical modes

When the SAW is turned ON

- SAW strains ⇒ dynamic optical superlattice
- Periodicity along x_1 is thus created, diffracting incoming light beams
- Photon dispersion is **folded into a mini Brillouin zone** (MBZ) between $k_1 \in [-k_{SAW}/2, k_{SAW}/2]$
- Increase of strain strengthens the phonon-photon interaction ⇒ Energy gaps open up

$$\theta_{max} = Sin^{-1} \left(\frac{k_{SAW}}{2k_0} \right) \approx 0.0715 \, rad$$

Conclusions

Acoustic model

- Prediction of SAW resonances
 - Good agreement with experimental results
- Mode characterization
- Sample engineering

Optics model

- Prediction of modes
- Light confinement observed
- Reflectance, Q-factors, dispersions characterized
- Good agreement with the TM method

SAW + POMC interaction

- Strong photon-phonon interaction
- Splitting and shifting of optical resonances
- Folding of photon dispersion
- Dynamic optical superlattice

Thank you for your attention!

Acknowledgements

The acousto-optic modulation model: optical modes

Experimental reports on $\lambda/2$ GaAs/AlAs POMCs (Q = 1200)*

- Two pronounced modes observed
- As we observed in our model

