

Modeling of microstructures in dissimilar copper/stainless steel electron beam welds

Iryna TOMASHCHUK, Pierre SALLAMAND, Jean Marie JOUVARD

Fe/Cu system

- Limited miscibility under undercooling conditions
- ➢No intermetallics
- Maximal solubility of Cu in austenic Fe matrix is about 15 at.%.

The metals used

Materials	AISI 316 L austenitic stainless steel				Cu	
Element	Si	Cr	Mn	Fe	Ni	Cu
at.%	0.91	20.27	2.09	70.00	6.73	99,99

Solubility Cu(austenite) = 18 at.% Solubility Fe(Cu) = 0.57-2 at.%

Two types of morphology

"droplet"

X1000

X300

"emulsion"

X 500

I=30 mA, U = 37,5 kV , P = 1125 W, v = 600 mm/min

Structure	Element, at. %					
	Cu	Fe	Cr	Ni		
"droplet"-like structure						
Α	8,0	65,6	20	6,4		
В	11,5	63,1	19,2	6,2		
С	21,4	56,6	16,6	5,2		
D	94	4,5	1,2	0,3		
C2	21,3	55,2	17,2	6,3		
"emulsion"-like structure						
Α	0,5	70,6	20,8	8,1		
В	7,9	65,7	20	6,4		
С	21,3	56,5	16,5	5,7		
D	94	4,5	1,2	0,3		
Ε	91,1	5,6	2,0	1,3		
F	14,9	62,5	18,0	4,6		

Modeling of microstructures

Model description

Realistic geometry

"droplet"

"emulsion"

Hypothesis

- ➤ "droplet" structure : the droplets are formed by eroding of steel by copper-rich flux.
- ➤ "emulsion" structure: undercooling phenomena with secondary phase separation.

Simplifications

- >the model deals only with solidification period of melted zone life ;
- ➤ convection is neglected;
- > steel is considered as homogeneous material with diffusion coefficient of γ -Fe.

Heat transfer

Model description

The position of modeling zone at global geometry of the weld.

Heat equation:
$$\rho c_p \frac{\partial T}{\partial t} = \nabla (-k\nabla T)$$

Discontinuity of properties:

$$\begin{array}{l} A=A_{solid}+(A_{liquid}-A_{solid})^{\cdot}flc2hs(T-T_{f}\,,\,\,_{\delta T}\,)\,,\,A=k,\,\rho,\\ C_{p}\end{array}$$

Boundary conditions:

The approximations of cooling laws used in calculations

Joints	"emulsion"	"droplet"		
Gauss approximation :				
T(K)	$= y0 + (A/(w \cdot sqrt(P)))$	$(/2)))\cdot exp(-2\cdot(t/w)^{2})$		
y0	1159,264	1333,8		
W	0,01523	0,0367		
А	16,2814	42,6		
\mathbb{R}^2	0,99	0,99		

Model description

Initial conditions

Diffusion

System	T, °C	D, m²/s	E, kJ/mol	Reference
Cu (γ-Fe)	950- 1083	3.0 [.] 10 ⁴	225	C.J. Smithels(Ed), Metals Reference
Fe(Cu)		1.4.10-4	217	Book, 4 ed, vol 2, Butterworths, London, 1967

$$\begin{array}{l} & \searrow \text{ copper-rich zones } \nabla \left(-D_{Cu\,(Fe\,)} \cdot \nabla c_{Cu} \right) = 0 \\ & \searrow \text{ steel-rich zones } \\ & D_{T} = D \cdot \exp(-\frac{E}{R \cdot T}) \end{array} \begin{array}{l} \nabla \left(-D_{Fe\,(Cu\,)} \cdot \nabla c_{Fe} \right) = 0 \\ & D_{domain} = D_{T} \cdot flc2hs(T_{start} - T, \, \delta T) \end{array} \end{array}$$

C(M), at. % - ? C(M) = Csteel' γ (M) '100 %, M = Fe, Cr,Ni, γ (M) - molar part of M in original steel

Emulsion model: choice of start points of diffusion

Diffusion starts immediately after beam pass and small globulas do exist:

Small globulas would be dissolved Front of diffusion is too large

Diffusion starts after solidification of steel and small globulas do exist from beginning:

There is no diffusion observed

Diffusion starts after beam pass in A and B and after Ts (Cu20Fe80) at the regions C, D, E ad F (when small globulas are already formed during undercooling of the weld).

Large diffusion front in A,B and small in C,D, E and F.

Results

"droplet"

9

Validation

Comparison between calculated profiles and real copper concentration founded by SEM-ESD analysis in "emulsion"-like (a) and "droplet"-like (b) microstructures.

Comparison of diffusion distances on different interfaces

Interface	Distance, µm		
	"droplet"		
	calculated	observed	
A/D	14	17	
B/D	4	3	
C/D	4	3	
C2/D	2,4	1,8	
	"emulsion"		
	calculated	observed	
A/B	31	29	
C/D	1,7	1,4	
C/E	1,3	1,1	
D/F	1,7	2,3	

Conclusions

Present numerical models of microstructures development are in good correspondence with SEM images and the results of local ESD analysis.

➢The temperature evolution is realistic.

➤The results confirm our hypothesis on the way of microstructure formation under different welding conditions. ➤There are two mechanisms of microstructures formation depending on operational parametens.

- o« droplet» structure is formed
 by eroding of steel surface by
 copper flux.
- o« emulsion» structure is formed under undercooling conditions.