
Genetic Algorithm Based Multi-Objective Optimization of 

Electromagnetic Components Using COMSOL® and MATLAB® 

A. Subbiah*, O. Laldin 

Faraday Future, Inc. 
*Corresponding author: 18455 S Figueroa St, Gardena, CA 90248, anandakumar.subbiah@ff.com

Abstract: Design optimization of 

electromagnetic devices such as motors, inductors 

and actuators is multi-objective in nature, and 

aims to minimize cost, losses, and volume while 

concurrently maximizing power capability, 

reliability, etc. Classical optimization techniques, 

when used in such design problems, tend to 

converge to locally optimum solutions, which are 

highly dependent on the chosen initial conditions. 

A framework consisting of a genetic algorithm – 

a global optimization technique – coupled with 

the finite element method, requiring reasonable 

computational effort, is set forth in this paper to 

address a multi-objective design problem. An 

electromagnetic actuator is designed utilizing the 

developed framework by generating the trade-off 

between competing objectives. 
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optimization, computational electromagnetics. 

1. Introduction

The global energy infrastructure is comprised 

of a variety of power magnetic devices (PMDs) 

which include motors, generators, transformers, 

inductors, actuators, relays, etc. In the field of 

power engineering, and particularly in the design 

of PMDs, modern advances are targeted at 

reducing system losses, mass, volume, and cost, 

while simultaneously increasing power 

capability, reliability, and large-scale 

manufacturability. Achieving these competing 

objectives in modern applications requires 

advanced methods for optimal design of PMDs. 

These include computationally efficient device 

models in conjunction with state-of-the-art global 

optimization techniques. 

The performance of classical gradient-bsaed 

techniques, which include gradient descent, 

Levenberg-Marquardt, simplex, method of 

moving asymptotes (MMA), ɛ-constraint 

methods [1], and so forth is subject to 1) 

convergence to local minima where the gradient 

approaches 0, 2) instability due to discontinuity or 

non-existence of the first or second derivatives, 

and 3) inaccuracy due to nonlinear and non-

convex nature of the objective functions. Genetic 

algorithms (GA) [2] are a robust class of global 

optimization methods that circumvent these 

issues, and are used herein to address a multi-

objective design optimization problem. 

Another key component in the process is a 

high-fidelity electromagnetic (EM) model of a 

PMD. It is possible to develop various types of 

models for these devices, requiring increasing 

levels of computational effort, resulting in 

improved accuracy.  The highest of these is 

typically obtained from a finite element (FE) 

model. In contrast, magnetic equivalent circuits 

(MEC) [3,4] can achieve relatively high fidelity 

and at a significantly reduced computational cost. 

However, the development and validation of these 

model for a given PMD topology is time-

consuming, inhibiting rapid evaluation of novel 

architectures. Herein, an FE-based approach is 

used and shown to be in reasonable agreement 

with an MEC-based approach. 

An EI-core actuator is designed to obtain the 

trade-off between competing volume and loss 

objectives. The actuator is shown in Figure 1, and 

is made of a stationary E-core wrapped with a coil 

of conducting wire and a movable I-core. The 

design parameters are the geometrical dimensions 

shown, winding parameters, and material types. 

The parameters and their respective ranges 

constitute the design space and are tabulated in 

Table A-1 of the Appendix. 

Figure 1. An EI-core electromagnet. 

The actuator to be optimized is required to 

produce an electromagnetic force of 2500 N, meet 

certain design constraints while simultaneously 

minimizing volume and losses. It is noted that 
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only resistive losses in the winding are 

considered. The design constraints are listed in 

Table 1. Most are readily evaluated directly from 

input parameters [4]; however, the current density 

constraint and the electromagnetic force are 

evaluated from the outputs of the FE model. 

Table 1: Actuator design specifications. 

Specification Value 

Electromagnetic force  > 2500 N 

Current density < 7 A/mm2 

Current < 5 A 

Volume < 1 L 

Packing factor < 0.7 

 

2. Methodology 

The 10 design parameters and their respective 

ranges result in a large design space over which to 

optimize. In addition to the robustness of the GA 

to numerically challenging objective functions, it 

is capable of globally optimizing over such a 

design space given the availability of a 

computationally efficient model. Herein, an 

optimization framework is set forth with a 

MATLAB implementation of a GA (GOSET) [2] 

used in conjunction with an FE model 

implemented in the COMSOL AC/DC module, as 

shown in Figure 2.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of computation methodology. 

The input to the GA are the design parameters, 

constraints, and objectives that need to be 

maximized (convertible to minimization 

problem). Typically, a tradeoff between 

competing objectives, referred to as Pareto-

optimal front, is obtained at the end of the 

evolution process. The GA calls a fitness function 

in MATLAB, wherein all the constraints are 

checked and objective values computed. This 

function provides the COMSOL AC/DC module 

with geometry, material, and winding parameters 

via the LiveLink for MATLAB. The AC/DC 

modules evaluates the electromagnetic (EM) field 

solution, returning the resulting electromagnetic 

force, flux linkage, current density, etc. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Execution flow chart of GA [2]. 

A brief overview of the execution of GOSET 

[2] is shown as a flowchart in Figure 3. The 

parameters from the design space are encoded as 

genes in a chromosome of a given individual. A 

random initial population of individuals is 

generated and fitness values are evaluated in the 

Initialization stage. Once the population is 

initialized, operators such as crossover, mutation 

and selection are used to modify the genes of the 

current generation to emulate natural 

reproduction and evolution.  

The fitness evaluation stage is then conducted, 

and is the most computationally expensive 

component of the design process. An initial set of 

constraints, not requiring an EM field solution, is 

first evaluated. If successful, the FE model is 

solved and the field solution obtained, from which 

the remaining constraints and objective values are 

evaluated. Thus, the computational effort is 

minimized. 

Subsequently, advanced genetic operators are 

used to keep the best individual (elitism), 

redistribute the individuals between groups 

(migration), and explore other possible designs 

(random search) in the next generation. This 
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iteration is repeated until the specified number of 

generation is reached. 

3. Use of COMSOL Multiphysics®  

The COMSOL products used in this paper 

include AC/DC and LiveLink for MATLAB 

modules. A parametrized COMSOL model for the 

actuator is created, using design parameters from 

Table 1. The fitness evaluation in the GA uses the 

LiveLink for MATLAB module to set the relevant 

model parameters. The steel and conductor types 

need to be changed based on the materials being 

chosen. This is in contrast with the Material 

Sweep option wherein all possible combinations 

of material types are simulated. The parametrized 

magnetic material change is achieved in two 

steps.  The B(H) and H(B) functions of different 

materials are defined as global parameters, which 

are then used to obtain a vector product with a 

series of Kronecker delta functions. Piecewise 

functions are used to define constant properties 

for the various materials. 

A parametric sweep is configured, as shown 

in Figure 4, to perform multiple EM solves for 

different parameter sets as from the GA. Doing so 

facilitates multiple stationary analyses for 

different geometry parameters, meshes, and coil 

current. Once the parametric sweep study is 

completed, the evaluated tables are transferred to 

the MATLAB workspace. 

 

Figure 4. The Parametric Sweep job configuration. 

4. Results 
The GA is initialized with 200 population 

members and is run for 200 generations. The 

optimization process takes approximately 30 

hours on a computer containing 24 CPU cores, 

clocked at 2.5 GHz, and 128 GB RAM. For a 

typical optimization run, the gene distribution and 

Pareto-optimal front is shown in Figure 4.  

 
a) 

 
b) 

Figure 4. Results for a typical optimization run, 

including a) the gene distribution and b) the Pareto-

optimal fronts. 

In Figure 4a, parameters 1 and 2 represent 

discreet material identifiers, which converge to 

integer values that correspond to HyperCo50 steel 

and a copper conductor, respectively. These are 

therefore optimum material choices for the 

actuator. The remaining parameters are 

continuous values and are related to the geometry 

and winding of the actuator. Parameters 4 to 6 are 

distributed over a moderate range, with the I-core, 

end-leg, and base widths (i.e. wi, we, and wb, 

respectively) are typically less than half of the 

center-leg width (i.e. wc), which itself tends to 

converge to a preferred value. In addition, there is 

convergence in the winding-related parameters 

(i.e. 7 to 10) suggesting preferred conductor 

counts and winding dimensions. 

The Pareto-optimal fronts, obtained from both 

MEC- and FE-based approaches, are shown in 

Figure 4b; the similarity of the fronts implies that 

the proposed framework produces reliable results. 

Furthermore, the fronts themselves indicate the 

trade-off between competing objectives (i.e. 

volume and loss). With either approach, a family 

of designs (containing approximately 70 optimal 

choices) is available for consideration based on 

system-level requirements. However, the FE-

based approach is expected to yield higher-

accuracy results, and is more generic with respect 

to geometry, allowing for rapid investigation of 

novel architectures. 
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In Figure 4b, Design 50 from the FE-based 

approach is indicated, for which the EM field 

solution is provided in Figure 5. The actuator 

produces a force of 2519 N, drawing a current of 

2.46 A. The winding packing factor is 0.699 and 

the current density is 3 A/mm2. The loss and 

volume of the actuator are 29.54 W and 0.81 L, 

respectively. The design satisfies all the outlined 

specifications, the parameters for which are 

tabulated in Table A-1. 

 

Figure 5. The B-field and vector potential iso-

contour plots for Design 50. 

5. Conclusion 

A multi-objective design of an actuator using a 

framework of COMSOL and MATLAB/GOSET 

is presented. The Pareto-optimal front obtained 

using the framework agrees well with that 

obtained from the MEC-based design 

optimization, establishing the validity and 

reliability of the approach. The results of a design 

are presented and are observed to satisfy the 

specified requirements. The methodology 

presented herein is sufficiently general to be 

expanded to a variety of PMD applications. 
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Appendix 

Table A-1: Design space and parameter values for Design 50 (FE-based approach). 

Parameter Symbol Description Range Design 50 

Min. Max. 

1 𝑇𝑐𝑟 Steel core material 1 5 Hiperco50 

2 𝑇𝑐𝑑 Conductor material 1 2 Copper 

3 𝑤𝑐 Width of the core center 2×10-3 10-1 2.26 cm 

4 2𝑤𝑒

𝑤𝑐

 Twice end-leg to center core 

width ratio 

0.5 1.5 1.00 

5 2𝑤𝑖

𝑤𝑐

 Twice I-core to center core width 

ratio 

0.25 1.5 0.826 

6 2𝑤𝑏

𝑤𝑐

 Twice E-core base to center core 

width ratio 

0.25 1.5 0.784 

7 𝑎𝑐 Desired cross-sectional conductor 

area 

10-9 10-4 0.826 mm
2
 

8 𝑁 Desired no. of turns 1 103 804 

9 𝑁𝑤 Desired slot width in conductors 1 103 20.2 

10 𝑁𝑑 Desired slot depth in conductors 1 103 41.2 
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