Implementation of the Isotropic Linear Cosserat Models based on the Weak Form

Jena Jeong¹ and Hamidreza Ramezani^{2*}

Jena Jeong¹:

École Spéciale des Travaux Publics, du Bâtiment et de l'Industrie (ESTP), 28 avenue du Président Wilson, 94234 Cachan Cedex, France. jeong@profs.estp.fr

Hamidreza Ramezani²: École Polytechnique de l'Université d'Orléans CNRS/CRMD, 8 rue Léonard de Vinci, 45072 Orléans, France.

hamidreza.ramezani@univ-orleans.fr

11/11/2008

Table of contents

- Theory of the extended continuum media
- Why Cosserat medium?
- Linear Cosserat elasticity formulation
- FE implementation of the Cosserat media via Comsol Multiphysics 3.4 Hotfix 2
- Difficulties and remedies!!
- Numerical results and verifications
- Syntheses and conclusions
- Outlooks and future plans

11/11/2008

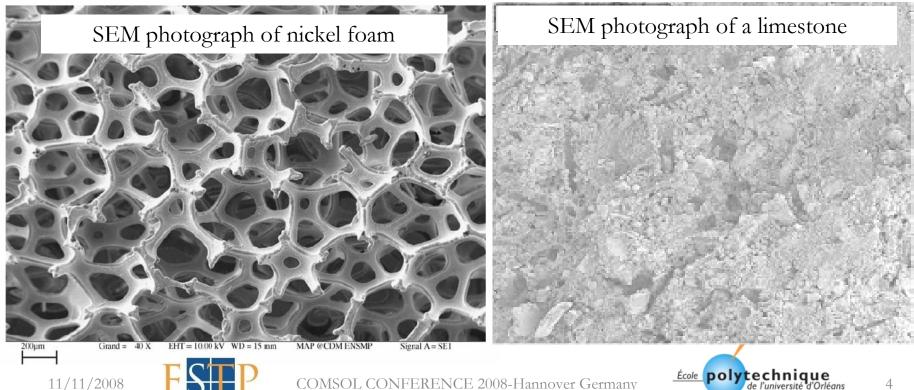
Theory of the extended continuum media

• General comparison among the extended continuum theories

Name	No. of DOFs	References
Cauchy	3	Cauchy (1823)
Micro dilatation	4	Cowin (1971)
Cosserat	6	Kafadar-Eringen (1976)
Microstretch	7	Forest-Sievert (2006)
Microstrain incompressible	8	-
Microstrain	9	-
Incompressible Micromorphic	11	-
Micromorphic	12	Eringen, Midlin (1964)

Cosserat medium as an explicit size effect approach

- What are the heterogeneous materials?
 - Nickel foams (energy saving), Natural limestone (stone weathering prediction), **Ceramic materials** (metallurgical applications)

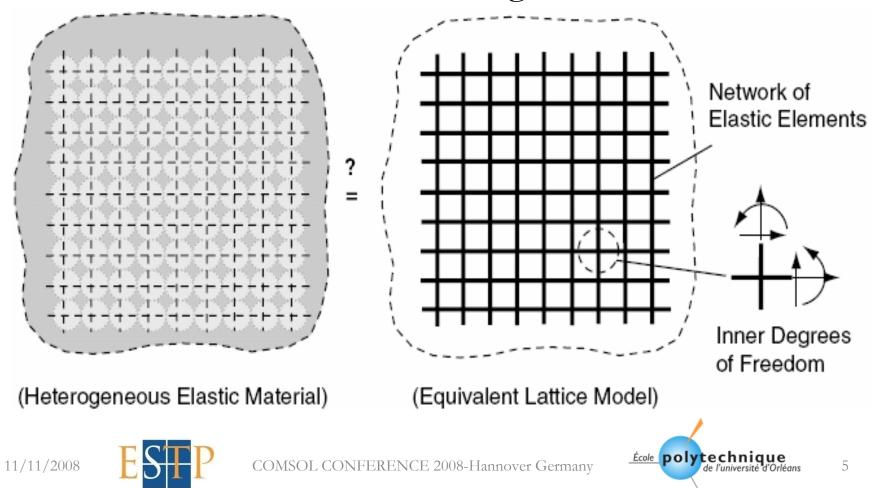


11/11/2008

COMSOL CONFERENCE 2008-Hannover Germany

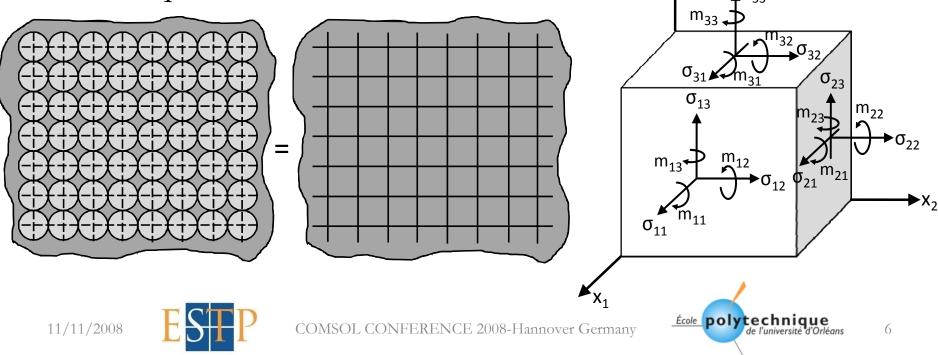
Cosserat medium as an explicit size effect approach

• How to deal with the heterogeneous materials?



Cosserat medium as an explicit size effect approach

- The Cosserat ideas is to introduce a phenomenological micro-rotation parameter.
- The micro-rotations can easily present the rotations in the equivalent lattice model. $A_{x_3}^{x_3}$



Why Cosserat medium?

- Both linear and non-linear Cosserat methods are capable of treating the size effects in an explicit manner via the characteristic lengths assumptions,
- The characteristic lengths have been assumed to be defined by the materials microstructure,
- The size effects can be readily obtained via the Cosserat assumptions (smaller specimens are stiffer than larger ones).
- The **micro-rotations** for the material microstructure have been computed **directly** from the numerical simulations.

Linear Cosserat elasticity formulation

• The energy minimization for the static case with respect to the displacement and micro-rotation vector:

$$I(\bar{u},\bar{\bar{A}}) = \int_{\Omega}^{\Box} \bar{\bar{\sigma}}:\bar{\bar{c}} \, dV + \int_{\Omega}^{\Box} \bar{\bar{m}}:\bar{\bar{k}} \, dV - \int_{\partial\Omega}^{\Box} \bar{\bar{t}}^{(n)} \cdot \bar{u} \, dS - \int_{\partial\Omega}^{\Box} \bar{Q}^{(n)} \cdot \bar{u} \, dS$$

$$= \int_{\Omega}^{body \ force \ work} \quad body \ moment \ work$$

$$= \int_{\Omega}^{\Box} \rho \bar{\bar{b}} \cdot \bar{u} \, dV - \int_{\Omega}^{\Box} \rho \bar{c} \cdot \bar{u} \, dV \quad \mapsto w.r.t. \ \bar{u} \ and \ \bar{\bar{A}}$$

$$= Div \ \bar{\bar{\sigma}}^T + \rho \bar{\bar{b}} = 0 \iff \sigma_{ji,j} + \rho b_i = 0$$

$$= Div \ \bar{\bar{m}}^T + \rho \bar{c} = -4\mu_c \ axl(skew \ \bar{e}) \iff Div \ \bar{\bar{m}}^T + \rho \bar{c} = \bar{\bar{e}}: \ \bar{\bar{\sigma}} \iff m_{ji,j} + \rho c_i = e_{ijk}\sigma_{jk}$$

École polytechnique

de l'université d'Orléans

Linear Cosserat elasticity formulation-basic equations

• Kinematics:

 $\bar{\epsilon} = \nabla \otimes \bar{u} - \bar{\bar{A}} \iff \bar{\epsilon} = \nabla \otimes \bar{u} - \operatorname{anti}(\bar{\varphi}) \iff \epsilon_{ij} = u_{j,i} - e_{ijk}\varphi_k$

• The constitutive laws: $\bar{\sigma} = \lambda \operatorname{tr}(\bar{\epsilon})\overline{\mathbb{I}} + 2\mu \operatorname{sym} \bar{\epsilon} + 2\mu_c \operatorname{skew} \bar{\epsilon} \iff \sigma_{ij} = \lambda \epsilon_{kk} \delta_{ij} + \mu (\epsilon_{ij} + \epsilon_{ji}) + \mu_c (\epsilon_{ij} - \epsilon_{ji})$ $\bar{m} = \alpha \operatorname{tr}(\nabla \otimes \bar{\varphi})\overline{\mathbb{I}} + \beta (\nabla \otimes \bar{\varphi})^T + \gamma \nabla \otimes \bar{\varphi} \iff \bar{m} = \alpha \operatorname{tr}(\bar{k})\overline{\mathbb{I}} + \beta \bar{k}^T + \gamma \bar{k} \quad \text{where} \quad \bar{k} = \nabla \otimes \bar{\varphi}$ $\Leftrightarrow m_{ij} = \alpha \varphi_{k,k} \delta_{ij} + \beta \varphi_{i,j} + \gamma \varphi_{j,i} \iff m_{ij} = \alpha k_{kk} \delta_{ij} + \beta k_{ji} + \gamma k_{ij}$

• Equilibrium equations:

$$\operatorname{Div} \bar{\sigma}^T + \rho \bar{b} = 0 \iff \sigma_{ji,j} + \rho b_i = 0$$

 $\operatorname{Div} \overline{\overline{m}}^{T} + \rho \overline{c} = -4\mu_{c} \operatorname{axl}(\operatorname{skew} \overline{\overline{c}}) \Leftrightarrow \operatorname{Div} \overline{\overline{m}}^{T} + \rho \overline{c} = \overline{\overline{\overline{e}}} : \overline{\overline{\sigma}} \Leftrightarrow m_{ji,j} + \rho c_{i} = e_{ijk} \sigma_{jk}$

École polytechnique de l'université d'Orléan

Non-linear Cosserat elasticity formulation-basic equations

• Kinematics:

$$\bar{\epsilon} = \nabla \otimes \bar{u} - \frac{\sin(\|\bar{\varphi}\|)}{\|\bar{\varphi}\|} \bar{A} + \frac{1 - \cos(\|\bar{\varphi}\|)}{\|\bar{\varphi}\|^2} \bar{A} \bar{A} - \frac{\sin(\|\bar{\varphi}\|)}{\|\bar{\varphi}\|} \bar{A} (\nabla \otimes \bar{u}) + \frac{1 - \cos(\|\bar{\varphi}\|)}{\|\bar{\varphi}\|^2} \bar{A} \bar{A} (\nabla \otimes \bar{u})$$

• The constitutive laws:

$$\bar{\sigma} = \lambda tr(\bar{\epsilon})\bar{\bar{I}} + 2\mu \operatorname{sym} \bar{\epsilon} + 2\mu_c \operatorname{skew} \bar{\epsilon} \iff \sigma_{ij} = \lambda \epsilon_{kk} \delta_{ij} + \mu (\epsilon_{ij} + \epsilon_{ji}) + \mu_c (\epsilon_{ij} - \epsilon_{ji})$$

$$m_{ij} = \alpha \, \varphi_{k,k} \delta_{ij} + \beta \, \varphi_{i,j} + \gamma \, \varphi_{j,i} \iff m_{ij} = \alpha k_{kk} \delta_{ij} + \beta \, k_{ji} + \gamma \, k_{ij}$$

• Equilibrium equations: $\text{Div } \overline{\sigma}^T + \rho \overline{b} = 0 \iff \sigma_{ji,j} + \rho b_i = 0$

 $\operatorname{Div} \overline{\overline{m}}^{T} + \rho \overline{c} = -4\mu_{c} \operatorname{axl}(\operatorname{skew} \overline{\overline{c}}) \Leftrightarrow \operatorname{Div} \overline{\overline{m}}^{T} + \rho \overline{c} = \overline{\overline{\overline{e}}} : \overline{\overline{\sigma}} \Leftrightarrow m_{ji,j} + \rho c_{i} = e_{ijk}\sigma_{jk}$

École polytechnique de l'université d'Orléans

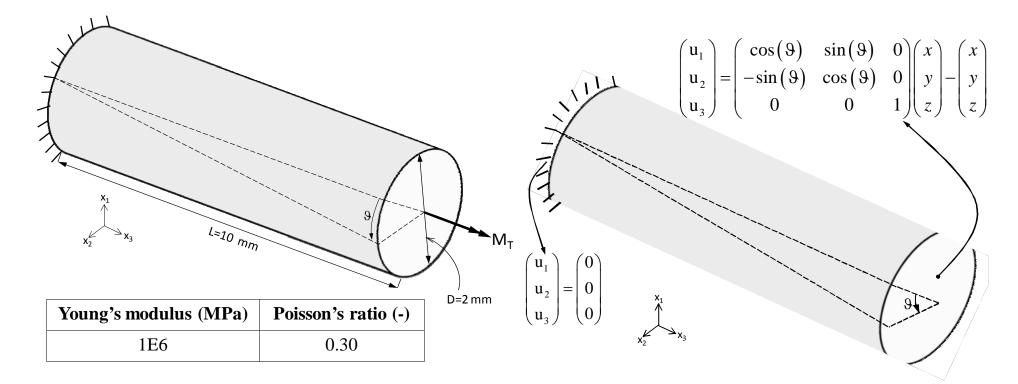
FE implementation of the Cosserat media

• Why Comsol Multiphysics?

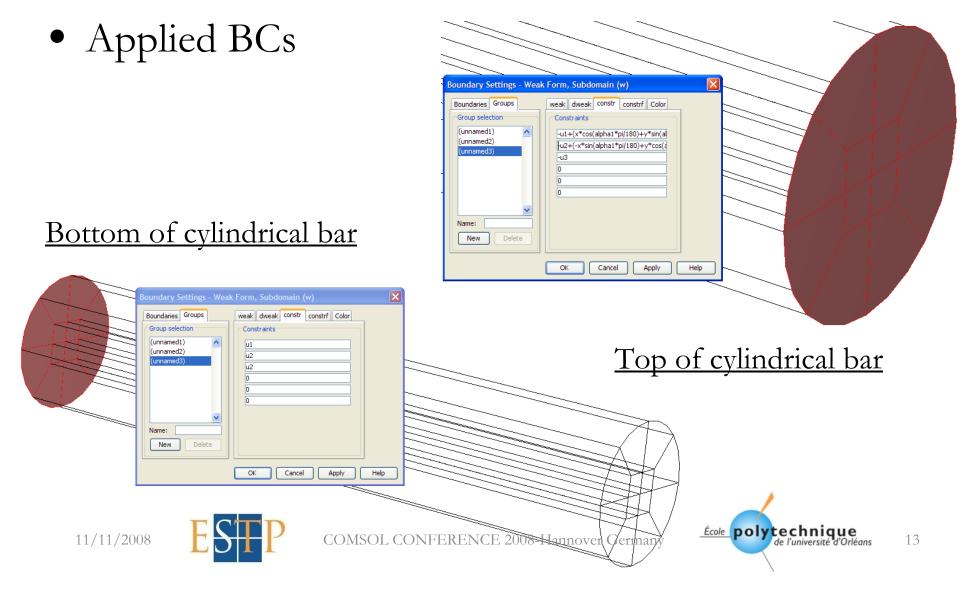
FEM Codes	Convergences Problem		Descriptions	
	Linear Cosserat	Non-linear Cosserat		
FlexPDE	Yes	Not-tested	The available solver doesn't support this type of equations	
FEAP	No	No	No. of DOFs is limited and there is no parallel solver	
Abaqus	No	Not-tested	Compilation problem for non-linear Cosserat under C++, Intel Fortran	
Comsol MP 3.4	No	No	The Pardiso solver (parallel solver) enables us to compute more than 704616 DOFs (25056 elements for 3D case)	

FE implementation of the Cosserat media

• Geometry of the model: • Applied BCs



FE implementation of the Cosserat media



FE implementation-Mesh density

• Mesh statistics:

Extended mesh:

Number of degrees of freedom: 704616

Base mesh:

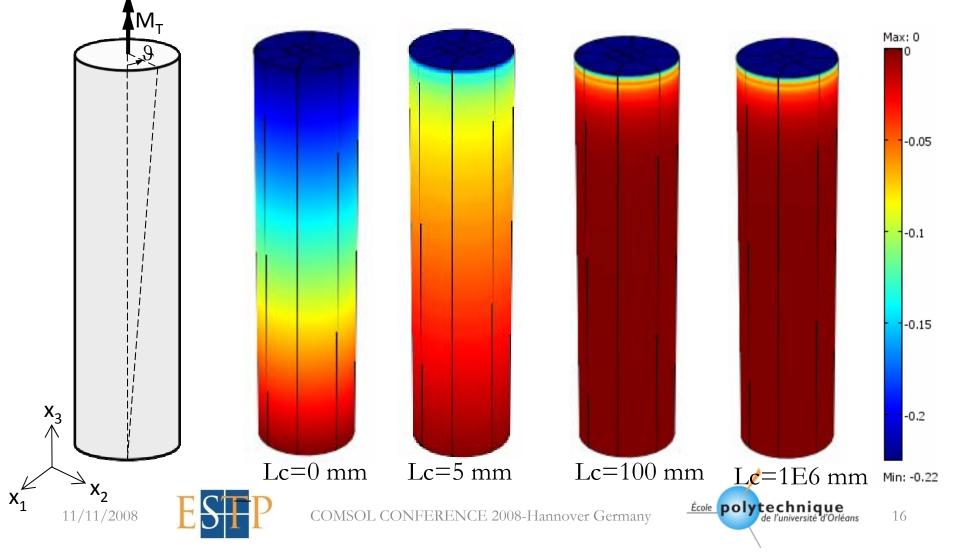
Number of mesh points:	26963
Number of elements:	25056
Tetrahedral:	0
Prism:	0
Hexahedral:	25056
Number of boundary elements:	10608
Triangular:	0
Quadrilateral:	10608
Number of edge elements:	1322
Number of vertex elements:	34
Minimum element quality:	0.3461
Element volume ratio:	0.1578

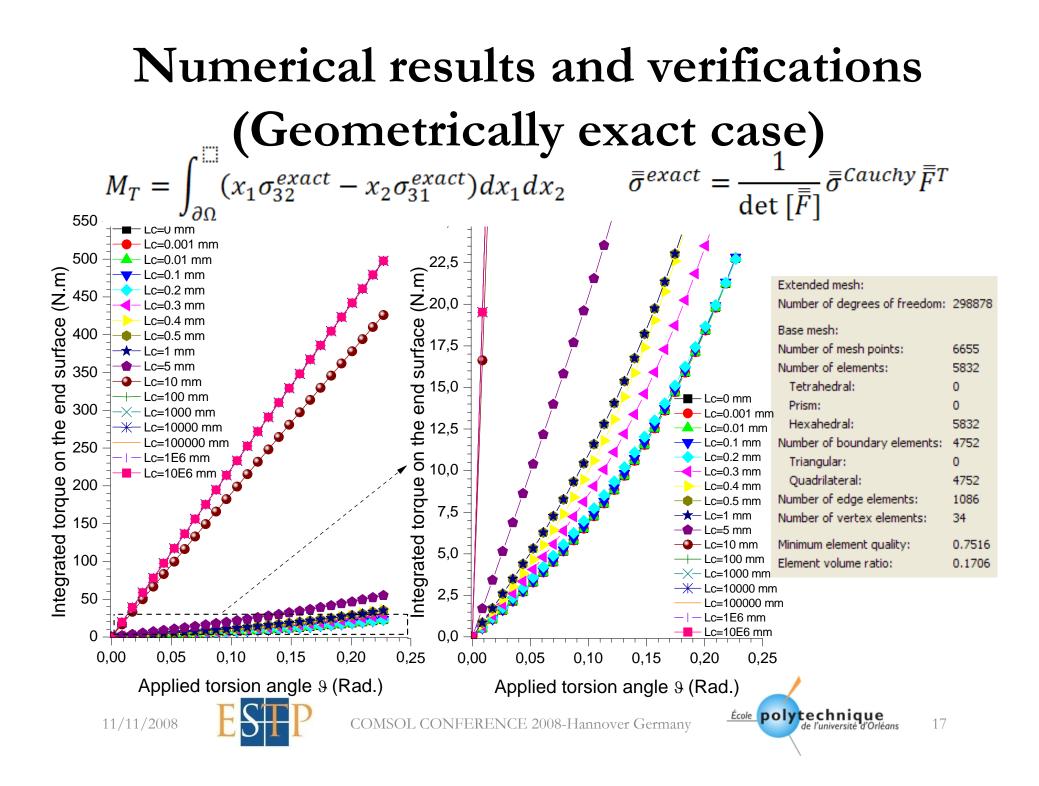
Difficulties and remedies!!

- PDE General form/PDE Coefficient form or **PDE Weak form**:
 - The PDE general form et/or PDE Coefficient are not suitable tools for the coupled numerical models (we lost 3 months!!!!).
 - PDE Weak form is the **best choice** and it is tested in this study.
 - Ansatz shape functions have been applied into the FE analyses (Quadratic and linear shape functions for displacement and micro-rotation vectors)

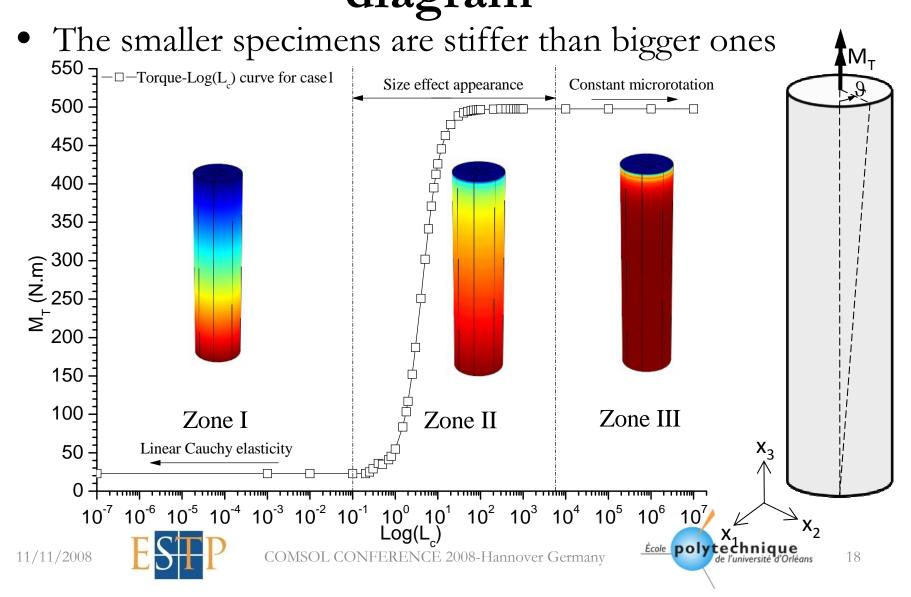
Numerical results-Macro-rotation in

x₃ direction
The smaller specimens are stiffer than bigger ones.





Numerical results-Semi-logarithmic diagram



Syntheses and conclusions

- The linear Cosserat elasticity has been successfully implemented into COMSOL MP 3.4,
- The non-linear Cosserat elasticity has been equally implemented into COMSOL MP 3.4 (under verification...),
- The size effect has been found out for different L_c values,
- No artificial BCs has been applied in the calculations and all microrotations have been calculated by FEM during computation stage,
- The mesh dependency problem was removed using Ansatz shape functions (quadratic and linear for the displacement and micro-rotation vectors, respectively),
- The outcomes for the cylindrical bar can be illustrated in a semilogarithmic diagram and three distinct zones can be easily distinguished,
- Zone I presents no size effects (large specimens),
- Zone II presents the size effects (smaller specimens are stiffer than larger ones),
- Zone III deals with the constant micro-rotation case in which the curvature energy vanishes.

Outlooks and future plans

- The non-linear Cosserat numerical models verification by means of the analytical solutions (Boundary value problem and conformal solution),
- The implementation of the elastic-plastic linear/non-linear Cosserat models under COMSOL MP environment,
- The micro-morphic models implementation into COMSOL MP (there are 12 unknown state variables instead of 6 variables for the linear and non-linear Cosserat models),
- The results verification by means of the analytical solutions of boundary value problem,
- The implementation of the elastic-plastic linear/non-linear micro-morphic models under COMSOL MP environment,
- The utilization of new COMSOL MP (Comsol 3.5) and enjoying new enhancements!!

