A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives

Ranjith Divigalpitiya 3M Canada Company London. Ontario. Canada

COMSOL Conference, Boston. October 9-11, 2008

Outline

- Introduction to ACFs
- Contact resistance
- Pristine contact
- Contaminated contact
- Comparison with theory
- Conclusions

Anisotropic Conductive Film Adhesives (ACF)

Types of conductive particles

Solid metallic particle

Metal coated insulative particle

Contact resistance

• Resistance is determined by the diameter of contact, 2a

Contact resistance = "Constriction resistance"

$$R_c = \rho/2a$$

- Only macroscopic
- FEA can reveal microscopic details

Cylindrical Constriction

Current distribution at contact of ACF

Electrical behavior: Solid Particle

Potential difference (V)

Current density (A/m^2)

Electrical behavior: Coated Particle

Potential difference (V)

Current density (A/m²)

Current density at contact

Contaminated Contact

- Conductive media DC
- Vary coverage $C = (b/a)^2$ by varying b
- Parametric calculation: vary potential V to obtain current density J(V)
- Integrate J to get I vs. V and determine R
- *R* as a function of coverage *C* for both types of particles

Current Density

C = 0.4

(a) SOLID METALLIC

(b) METAL COATED

COMSOL vs. Theory

R. Divigalpitiya, IEEE Trans. Compon. Packag. Technol., vol.31, no.1, pp.222-228, March 2008

Geometrical Arguments

Solid Particle

Coated Particle

 $\begin{aligned} R_{SO} &= \rho \ /a & R_{SC} / R_{So} = 1 & b \le (a-t) \\ R_{SC} / R_{SO} &= 1 / \sqrt{(1-C)} & R_{SC} / R_{SO} = k / \sqrt{(1-C)} & \text{otherwise} \\ k &= \sqrt{(2t/a - (t/a)^2)} \end{aligned}$

Conclusions

- Contact resistance can be modeled with COMSOL
- Preferential conduction at periphery of the contact circle
- The centre of contact of coated particle does not participate in current carrying
- The coated particle is electrically more immune from contamination at the bond
- Bonding with force, heat generation etc., can be modeled using multiphysics now
- Helps understand the electrical behavior of ACFs