
Relativistic Quantum Mechanics Applications Using The Time 
Independent Dirac Equation In COMSOL 
 

A. J. Kalinowski*1 
1Consultant 
*Corresponding author: East Lyme CT 06333, kalinoaj@aol.com 

Abstract: COMSOL is used for obtaining the 
quantum mechanics wave function {Ψm(x,y,z,t)}
as a solution to the time independent Dirac 
equation. The probability determination of a 
particle being at a spatial point can be treated by 
a) the “matrix mechanics formulation” or b) the 
“wave function formulation”. The latter 
approach is used herein, because it involves 
solving field partial differential equations, thus is 
directly adaptable to COMSOL.  
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1. Introduction 

The purpose of this paper is to illustrate the 
use of COMSOL for obtaining the quantum 
mechanics wave function {Ψm(x,y,z,t)}
(representing matter waves) as a solution to the 
time independent Dirac equation. In quantum 
mechanics, solutions for the probability of a 
particle being at a particular point in space are 
usually treated through: a) the “matrix mechanics 
formulation” originated by Werner Heisenberg or 
b) the “wave function formulation” originated by 
Erwin Schrödinger. The latter approach is the 
one used herein, mainly because it involves 
solving field partial differential equations, and 
therefore is directly adaptable to COMSOL. 

The Dirac equation is employed in particle 
physics and historically provided the first 
combined application of quantum mechanics and 
relativity theory by introducing a four 
component wave function {Ψm} m=1,2,3,4 (e.g. 
in contrast to the one component Schrödinger 
wave function Ψ). Historically, {Ψm} described 
the behavior of fermion type particles (e.g., 
electrons) and further predicted the existence of 
antiparticles (e.g., positrons) even before they 
were observed experimentally. Use of COMSOL 
MULTIPHYSICS®: the Coefficient-Form PDE 
"time independent" study is employed. When the 
wave vector k lies in the xy plane, the 4 

component {Ψm} simplifies into two components 
for m=1&4. COMSOL is then used for obtaining 
the 2-D wave function {ψ1(x,y,ω),ψ4(x,y,ω)} as a 
solution to the exp(-iωt) time varying steady 
state Dirac equation at frequency ω. 

There are multiple examples in the 
COMSOL archives for solving the Schrödinger 
wave function; however, this appears to be the 
first COMSOL application towards solving the 
Dirac equation wave function. Thus we first 
proceed with three validation examples (using 
comparisons to exact solutions), followed by an 
example without  an exact solution available. 

2. Governing Equations 

Governing equations for the behavior of a free 
fermion particle of mass m are represented by the 
time dependent quantum mechanics Dirac 
equations (with wave function {Ψm(x,y,z,t)} as 
the dependent variables) and are given by [1]: 

with M′=mc/h , c= speed of light,  h =h/(8π), 
(where h is Plank’s constant), and i =√(-1) .  

3. Method 

The governing Eqs.(1) are solved for both 
Eigenvalue and for steady state problems using 
the COMSOL MULTIPHYSICS® Coefficient-
Form PDE “Eigenvalue” and the "Time 
Independent" studies. Two dimensional solutions 
are sought where the wave function depends on 
spatial coordinates x,y. Therefore gradients in the 



z direction drop out and the uncoupled 
{ Ψ1(x,y,t),Ψ4(x,y,t) } components are solved 
with just the first and fourth equations of Eqs.(1). 

  
3.1 Eigenvalue Problem: Cartesian Coord. 
     Solutions are sought of the form:  

and upon substituting Eq.(2) into the first and 
fourth of Eqs.(1), one obtains: 

as the standard Eigenvalue form. With 
homogenous boundary conditions, we seek the  
Eigenvalue λ′n and associated N Eigenvectors 
{ ψ1(x,y, λ′n), ψ4(x,y, λ'n) }n , n=1,2,…N that 
satisfy Eq.(3).  

3.2 Steady State Problem: Cartesian Coord.  
 Solutions are sought of the form: 

and upon substituting Eq.(4) into the first and 
fourth of Eqs.(1), one obtains: 

as the steady state Cartesian coord. form. With 
non-homogenous B.C.’s (Boundary Conditions), 
the boundary is driven, and solutions {ψ1(x,y,ω), 
ψ4(x,y,ω) } are sought that meet  Eqs.(5).  

3.3 Eigenvalue Problem: Cylindrical Coord.   
Solutions are sought of the form: 

where upon substituting Eq.(6) into the 
cylindrical coordinate form [2] of the first and 
fourth of Eq.(1) (after correcting a missing i 
factor in Eqs.(28) and 29 of [2] ) one obtains: 

as the cylindrical coordinate Eigenvalue form, 
where ρ and φ are the conventional radial and 
angular coordinates. With homogenous boundary 
conditions, the eigenvalue λ′n and associated N 
eigenvectors { ψ1(ρ,φ, λ′n), ψ4(ρ,φ, λ'n) }n , n=1,2,
…N are sought  that satisfy  Eq.(7). 

3.4 FEM Solutions: Cartesian Coord. 
T h e C o e f f i c i e n t - F o r m P D E " Ti m e 

Independent” Study is used for Eigenvalue and 
steady state type problems and are used to solve 
the example models presented herein.  
Element Type: “Free Quadratic” elements are 
used for mesh generations with quadratic shape 
functions. 
Boundary Condition Enforcement: Constraint 
Enforcements of the form: 

are employed, where the “Apply Reaction Terms 
On” option of “Individual Dependent Variables” 
is selected; also the “Use Weak Constraints” box 
is checked “On”. This combination worked out 
for the field equations solved herein. 
Element Size: The examples treated here involve 
propagating waves (of spatial wavelength λ), and 
therefore the maximum element size is limited 
by (ΔL) max ≤ λ/12. For regions involving an 
expected higher degree of spatial response 
change, an even finer mesh was employed such 
as in the last two-slit example FEM solution.  

4. Theory 

The basic building blocks of the Dirac theory 
are freely propagating matter waves such as   
planar and cylindrical ones. The treatment of 
simulating infinite domains with truncated finite 
domains by using absorbing boundary conditions 
is discussed.  

4.1 Plane Waves 
The exact solution to Eq.(3) for a plane wave 

of freq. ω traveling in unit vector direction n,
(with position vector r=xi+yj ), is given by [1] : 

where A is an arbitrary constant. As an example, 
for a plane wave traveling in the +x direction, set 
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n= xi, θinc=0, thus ρˆ=x; whereas for a wave in 
the -x direction, set n= -xi, θinc=π, thus ρˆ=-x. 

4.2 Cylindrical Waves 
Exact solutions to Eq.(7) representing 

cylindrical waves traveling in the radial unit 
vector direction nρ  are given by [3] : 

where the H terms are Hankel functions of the 
first kind,  A′, A″ are arbitrary constants, and the 
odd n=1,3,5… correspond to a set of 
Eigenfunctions. The second approximate 
solution above is for large Bessel function 
arguments, kρ≫1. We seek the simplest wave 
structure that looks like a plane wave, except for 
a spreading reduction term in the ρ direction. 
Thus for n=1, the 2nd of Eqs.(11) reduces to: 

which looks  like the plane wave solution  Eq.(9) 
(except for the 1/√kρ spreading loss factor) and 
the angle of incidence term θinc corresponds to 
the cylindrical coordinate φ. The cylindrical 
solution acts like a set of local plane waves 
emanating from a boundary ρ=constant. 

4.3 Absorbing Boundary Condition 
When a plane or cylindrical wave travels 

outward and encounters an artificial cut into a 
modeled infinite domain, an absorbing boundary 
condition is needed to properly terminate the 
FEM mesh. The constraints shown next are 
enforced as a special case of Eq.(8). 
Plane Wave Absorber: by differentiating Eq.(9) 
in the direction of propagation, e.g. +x, a relation 
between ψm and ∂ψm/∂x can be obtained:         

and similarly for a wave traveling in the -x 
direction, the boundary condition is: 

Cylindrical Wave Absorber: by differentiating 
Eq.(13) in the direction of propagation, e.g. +ρ, a 
relation between ψm and ∂ψm/∂ρ can be obtained: 

Figure 1. Cyl. Wave Absorbing Boundary Condition 
Compared to Plane Wave Boundary Condition 

The Fig.(1) absorber comparisons show that after 
placing the B.C. cut around ρ/λ ≥3 wave lengths 
from the origin, the cylindrical absorber 
coefficient Mm approaches the plane wave 
absorber Mm in both amplitude and phase. The 
curves labeled Mm EXCT and ANG. Mm EXCT 
are obtained from the first of Eqs.(11) for n=1. 

4.4 Over Constrained Spatial Boundary Cond. 
A simple 1-D example illustrates care must 

be taken regarding what is used for the boundary 
conditions downstream of the wave propagation. 
The advection equation is both 1st order in space 
and in time, thus is a close relative to the 1-D 
Dirac equation that is also 1st order in space and 
in time. The 1-D advection equation has only 1 
unknown as opposed to the 1-D Dirac equation 
that has 2 unknowns, thus it is simpler to explain 
the over constrained issue for the advection 
equation. Contrast the 1-D 1st order in space and 
in time advection equation to the 1-D 2nd order 
in space and 1st order in time Schrödinger 
equation. Shown below is the Eq.(16) advection 
equation and the Eq.(17) Schrödinger equation. 

The steady state solution is sought, therefore 
upon substituting Eq.(4) into Eq.(16) and Eq.(17) 
and solving the remaining ordinary differential 
equations, one obtains: 



where Eq.(18) is the advection equation solution 
with only one arbitrary constant B1 to evaluate 
and Eq.(19) is the Schrödinger equation solution 
with two arbitrary constants A1 , A2 to evaluate. 
Both equations support waves traveling in the +x 
direction (the B1 and A1 terms), however Eq.(19) 
can support a backward traveling wave in the -x 
direction (the  A2 term). 

The FEM Coefficient-Form PDE "time 
independent” COMSOL solver requires a 
boundary condition to be applied at both ends of 
the domain, 0 ≤x≤ L. Therefore when using a 
first order pde like the advection equation (or 
Dirac equation), one must use a boundary 
condition at the downstream end (e.g. x=L) that 
is consistent with what the solution would have 
been for the outgoing undisturbed wave. Two 
simple steady state illustrative examples are 
given next in order to illustrate the consequence 
of first meeting this consistency requirement and 
secondly not meeting the requirement.  
Plane wave down infinite rod;  B.C. ψ(0)=1 

Analytic solution: in the case of the 
Schrödinger equation, there are two arbitrary 
constants, but since there is no reflected wave, 
A2 =0 and A1 is set = ψ(0)=1 .  For the advection 
solution, B1 is set = ψ(0)=1. 

Finite element solution: one cannot model 
infinity, so an artificial cut is made at x=L and an 
Eq.(14a) wave absorbing boundary condition is 
used to terminate the mesh. The exact vs FEM 
real part is shown in Figs.(2a) & (2b) for the 
Schrödinger and advection equation solutions 
respectively, where good comparisons are 
achieved for both plots (imag. parts also agreed).  
Two end driven  finite rod; B.C. ψ(0)=1; ψ(L)=-2 

Analytic solution: in the case of the 
Schrödinger equation, A1,A2 are evaluated to 
meet the two boundary conditions at x=0 and 
x=L. In the case of the advection equation, only 
arbitrary constant B1 is available, therefore one 
arbitrary constant cannot be selected to meet two 
boundary conditions at say x=0 and at x=L. We 
enforce B1=ψ(0)=1, but one gets what the 
solution dictates at ψ(L), not the desired ψ=-2. 

Finite element solution: here a cut into 
infinity is made, thus the domain is a fixed 
length x=L. COMSOL demands a boundary 
condition at x=L (if you apply nothing there it 
uses  default ψ(L)=0 ). Upon applying the same 
boundary conditions ψ(0)=1; ψ(L)=-2 to both the 
Schrödinger equation and the advection 
equation, we get the results shown in Figs.(2c) & 
(2d). The COMSOL Schrödinger solution 
matches with the exact solution, but although the 
COMSOL advection solution meets both BC’s, 
there are erratic  zigzag oscillations v.s. x .   Note 
if we applied a boundary condition of  

ψ(L)=1.0exp(ikL) (one that is consistent with the 
freely propagating wave), then the COMSOL 
and exact solution matched (this was done but 
results are not shown here due to space limits). 

Figure 2. Solution comparison of second order in x 
Schrödinger equation and first order in x advection 
equation using the same boundary conditions  

In a similar manner, care must be taken in 
setting the downstream boundary conditions for 
the Dirac first order in x equations. The use of 
absorbing boundary conditions to simulate 
infinity is used in the all COMSOL example 
problems to follow in this paper. 

4.4 Probability Computation 
The wave function ψm(x,y) can be used to 

compute the probability PΔA of a particle being in 
a particular finite area zone, ΔA, of space for 2-D 
models. Firstly, the probability density ρ′(x,y) is 
defined as the probability per unit area of the the 
particle being at a particular spatial point x,y and 
is given by  Eq.(20) [1]: 

The probability PΔA can be computed with  Eq.
(21), where the  normalizing factor Λ is set so 
PΔA ➞1 when  ΔA ➞ ATotal (model total area)[4]. 

5. Numerical Models 

The FEM models herein all use the same pde 
Dirac equation parameters. Length quantities are 
very small at the atomic level, therefore in the 
results presentation, length quantities are given 
as a multiple of the incident wave length λ=2π/k. 



5.1 Model Parameters 
All Dirac equation solutions use the 

following parameters in the pde’s: c= 2.998e10 
cm/sec,  h =h/(8π) = 1.055e-27  erg/sec and the 
particle (electron) mass m = 9.109e-28 grams. 
Eigenvalue models: the user enters a wave 
number k (via the B.C. Eq.(14a) and solves for 
the corresponding eigenvalue λ′ (the sought after  
Eigenfrequency ω is extracted from λ′=i ω). 
Steady state models: one face of the model is 
driven with a plane (or cylindrical wave) at a 
specific ω related to the particle velocity [1]:  

where Ep is the particle energy,  v = 103.0e8 cm/
sec is the particle velocity. It is purposely made 
approximately 50 times bigger than a typical 
electron velocity so that the strength of the so 
called [1]  “ψ4 small component” is not dwarfed 
in comparison to the “ψ1 large component” for  
plotting contrast. Thus using Eq.(22), it follows 
that ω=8.26e20 rad/sec (i.e. f=1.31e20 Hz). 

6. Results 

Three validation models are first addressed, 
where the exact solution is also known, followed 
by a complex double slit example. Problems are 
solved using the section 5.1 model parameters.  

6.1 Plane Wave Eigenvalue Validation  
An infinite 2-D domain is modeled with a 

finite element zone of length L (in direction of 
propagation) and width W as shown in Fig.(3a) 
inset. The model is terminated with an Eq.(14a) 
forward facing absorbing boundary condition at 
both end faces, and B.C. ∂ψm/∂y=0 on both 
lateral faces normal to the direction of 
propagation. The k-ω relation for a propagating 
wave in the x direction is sought. For a selected 
k, (say k=9.4544e9), the Eq.(3) is solved in 
COMSOL for Eigenvalue λ′ (ω is the imag part 
of λ′) and for the corresponding Eigenfunction 
ψm. The model dimensions are set as L=2.625λ x 
W=1λ, where λ=2π/k. While post processing the 
COMSOL solution, there are many Eigenvalues 
to sort through, however the value sought is one 
having a purely imaginary λ′ (thus the response 
has a harmonically varying Eigenfunction in the 
x direction and is constant in the y direction). A 
presentation of one such solution is illustrated in 
Fig.(3d), where the FEM solution is shown in 
comparison to the exact solution (using n= xi, 
θinc=0 in Eqs.(9-10) ). Good agreement between 
the two results is obtained. The exact 

Eigenfrequency (from 2nd of Eqs.(10) ) is 
ωΕΧ=8.261e20, compared to COMSOL’s 
ωFEM=8.256e20. COMSOL successful ly 
computed the FEM amplitude ratio ≡ (max 
Realψ1)/(max Realψ4) = 5.68 compared to the 
EXACT amplitude ratio ≡ 1/R=5.65 . The 2-D 
FEM Real ψ1 and FEM Real ψ4 carpet plots are 
shown in Figs.(3b) & (3c) insets respectively.  

Figure 3  Wave Function Eigenvector ψ1, ψ4 vs. 
Normalized x/λ Coordinate ; (a) Simulated Infinite 
Domain FEM Model; (b) FEM Real ψ1 vs. x,y; (c) 
FEM Real ψ4 vs. x,y; (d) Real & Imag. ψ1, ψ4 of FEM 
↔Exact Comparison Solutions @ Mid Line y=0 

6.2 Reflected Wave Steady State Validation  
A semi-infinite 2-D domain (Fig.(4a) inset) is 

considered where an incident plane wave 
arriving from x= -∞ (given by Eq.(9) ) travels in 
the +x direction and is reflected back from a 
perfectly reflecting boundary condition at x=L . 
In scalar pde’s such as the acoustic wave 
equation or Schrödinger equation, a reflecting 
boundary condition would simply be ∂p/∂x =0 or 
∂ψ/∂x =0 at x=L respectively. However in the 
two component Dirac equation, the Eqs.(23) 

B.C.’s will reflect a ψRm wave backward with the 
same strength as the incident wave ψIm . The 
exact solution that meets Eqs.(23) is given by: 

where the coefficient Ainc is set = 1.0. The finite 
element model is modeled with a zone of length 
L and width W where the L=2.625λ x W=1λ 
domain size of the previous example is used. The 
model is terminated at end face x=L with Eqs.
(23) boundary conditions and at lateral end faces 



y=0 & y=W with boundary condition ∂ψm/∂y=0. 
For the boundary cut into infinity at the x=0 face, 
there is something known (i.e. incident wave ψIm 
using Eq.(9) at x=0) and something unknown 
(i.e. reflected wave ψRm). Differentiating the third 
of Eqs.(23) and using the backward facing 
absorber Eq.(14b), the following Eq.(24) “drive 
through the absorber” boundary condition is 
enforced via Eq(8): 

The section 5.1 steady state model parameters 
are used in the FEM runs and good agreement 
between the Total FEM vs Exact magnitude       
{|ψ|}T solutions are given in Fig.(4c) . 

Figure 4  Interaction of Dirac Plane Wave  With 
Reflecting Boundary: (a) Semi Infinite FEM Model, 
(b) 2-D Real ψ1  FEM Incid. Wave Alone  (c) FEM vs. 
Exact Mag. of  Total Sol. {ψ}Τ = {ψ}I + {ψ}R vs. x/λ  

The peak {|ψ|}T solution magnitude is double the 
magnitude of the incident wave which is 
analogous to an acoustic wave reflected from a 
reflecting B.C. . The Fig.(4b) inset shows what 
the FEM incident solution alone would look like 
if it did not hit a reflecting boundary at end x=L, 
where an Eq.(14a) forward absorbing B.C. was 
used in place of the Eqs.(23) reflecting B.C. . 

6.3 Cylindrical Wave Steady State Validation 
 The two previous examples were for a one 

dimensional wave embedded in a two 
dimensional space, therefore solutions varied in 
the x direction but were constant in the y 
direction of propagation. This next validation is a 
more complex example where the solution varies 
in both x and y as the wave propagation unfolds. 
The problem consists of a circular annular region  
Ri ≤ ρ ≤ Ro ; 0≤ φ ≤2π , driven on the inner 
radius by the Eq.(13) cylindrical wave, evaluated 
at ρ=Ri . The outer boundary, at ρ=Ro, is 
terminated with an Eq.(15) radial absorbing 

boundary condition (rewritten in Cartesian 
coordinates). The section 5.1 steady state model 
parameters are used in the FEM run, where the 
model size in terms of wave lengths is: Ri =2.5λ, 
Ro =5.0λ . Good agreement for ψ1, ψ4 is achieved 
between the FEM solution and the corresponding 
Eq.(13) exact solution, as shown in Fig.(5) .  

Figure 5   Dirac Cyl. Wave :  (a) Exact Real ψ1 , (b) 
FEM Real ψ1 , (c) Exact Real ψ4 , (d) FEM Real ψ4 

It is of particular interest to note that in Figs.(5c) 
& (5d), COMSOL successfully tracked the spiral 
exp(iφ) response in the ψ4 small component 
wave function. Similar agreement (not shown) 
was obtained for plots of the imaginary 
component. The exact ψ4 varies with φ, but the 
probability density ρ′ depends on |ψ4|2 and since  
|exp(iφ)|=1, the probability along the ψ4 wave 
front ( i.e. for ρ=constant ) is independent of φ . 

Figure 6 Cylindrical Wave: Exact  vs. FEM Real Part 
ψ1 , ψ4 vs. ρ/λ for constant φ=45º and φ=135º 

Comparisons for real ψ1,ψ4 along a ρ/λ 
coordinate for constant φ=45º and φ=135º fixed 
angles, are shown in Fig.(6), where there is good 
agreement between the Exact and FEM 
solutions. Imag. ψ1,ψ4 (not shown) also agreed.  



6.4 Two Slit Interference Demonstration 
Reference [4] treated the interference pattern 

set up by a time dependent Schrödinger equation 
plane wave incident upon two slits. A similar two 
slit problem is solved here where a steady state 
time independent Dirac equation plane wave is 
incident upon two slits of aperture W=λ/12, 
separated by a pitch of S=2λ as shown in the Fig.
(7a) inset enlargement. The FEM model is 
simplified herein, where an Eq.(9) Dirac plane 
wave is driven directly at the back of the slits, 
and B.C. Eq.(24) is applied there (as in problem 
6.2, this back facing absorber is included in case 
any spurious back reflections are present from 
any imperfections in the outer boundary 
absorbing B.C.). The Eq.(15) absorbing B.C. is 
used at the outer model radius Ro=5λ, where  
Fig.(1) shows that at ρ/λ=5, the cylindrical wave 
B.C. is for all practical purposes like the simple 
plane wave absorber.   An  Eq.(14b)  backward  

Figure 7  Interference of Dirac Wave Passing Through 
2 Slits: (a)  Real Part ψ1, (b) Mag. |ψ1|,  (c) Mag.  |ψ4| 

facing absorber is used on the inside vertical wall 
of the FEM domain to absorb spurious 
reflections from any imperfections in the outer 
boundary absorbing B.C. . With sect. 5.1 
parameters, the FEM solution is in Fig.(7), where 
Fig.(7a) shows the Real Part ψ1 and Figs.(7b) & 
(7c) show the Mag. |ψ1|, |ψ4|. Observe waves 
emerging from the slits interact, forming bands 
of orange constructive and green destructive 
interference. In close at Fig.(7b) cut-1, the Eq.
(20) probability density ρ′(x,y) is  0.067 times 
smaller @ Δy=λ/2 above the slit than in line with 
the slit, and 0.037 times smaller @ Δy=-λ/2 
below the slit than in line with the slit (locations 

denoted by • ). One might intuitively expect the 
cut-1 ρ′(x,y) to be greater in line with the slit. Yet 
farther back at cut-2, ρ′(x,y) is 18.9 times bigger 
@ Δy=λ above the slit than in line with the slit 
and 22.1 times bigger @ Δy=-λ below the slit 
than in line with the slit. It is unintuitive to have 
ρ′(x,y) be greater not in line with the slit, and this 
effect is due to the constructive interference. 

Figure 8 No Wave Interference with Bottom Slit Shut  

In Fig.(8), with bottom slit shut, ψm is plotted  on  
the top slit centerline where the real and imag. 
parts of ψm  have a traveling wave structure and 
fall off like 1/√x cyl. wave spreading. Three 
interference nulls for the 2-slit run (|ψ1|2 blue   - - 
plots) are shown compared to a 1-slit shut run    
(|ψ1|2 green - - plots) without interference nulls. 

 7. Conclusions 

Agreement between the exact vs FEM solution 
for three validation examples is good.  Solutions 
to the incident harmonic wave upon a two slit 
barrier, produced diffraction patterns showing 
bands of null zones due to wave destructive 
interference, thus showing the diffraction 
behavior of particles at the atomic scale. Dirac 
equations are spatially 1st order, thus truncated 
infinite domains with absorbing B.C.’s work but 
explicit downstream B.C.’s on ψm should be 
avoided. Future work is needed for higher order 
absorbing B.C.’s (e.g. perfectly matched layers) 
than the first order  plane wave ones used here. 
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