

Modeling and Simulation of Control Valves via COMSOL Multiphysics Shoubing Zhuang, Ph.D.

CAEaid, Inc.

Introduction

Control valves

Control valves with deformable sleeves

Moving-Mesh Coupling Method

Incorporating 3 physics types

- Laminar Flow
- Solid Mechanics
- Moving Mesh

'Laminar Flow': "Wall" definition

CAEaid

Moving-Mesh Coupling Method (cont'd)

Solid Mechanics': "Pressure" boundary load to account for the influence of fluid pressure on valve sleeves.

Moving-Mesh Coupling Method (cont'd)

'Moving Mesh': Two 'Prescribed Mesh Displacement' boundaries should be defined.

Model Set-up

- The sleeve domain is partitioned for definition of boundary conditions and contact pairs.
- The valve body and adjusters are defined as rigid domain.

Model Set-up (cont'd)

Contact definition: 6 contact pairs

Results – t=2s

Certified Consultant

CAEaid

Results – t=4s

Results – Velocity and Displacement

Results – von Mises Stress and Pressure

S.Zhuang, 2017

CAEaid

Conclusions

- The moving-mesh coupling method incorporates three physics types, each of which is easy to set up.
- The moving-mesh coupling method is capable of simulating control valves with deformable sleeves, where large deformation, contact interaction and material nonlinearity are included.

THANKS FOR YOUR ATTENTION!

Shoubing.Zhuang@CAEaid.com