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Results
Our simulations show enhancement factors of up to 10° for cases with
thick electric double layers and large variations in surface charge
along the channel. In such cases, electric field gradients from ion
concentration polarization effects & thick EDLs can cause mid-channel
sample focusing or stacking. For certain conditions, the focusing
location can be shifted from the edge of the electrode to some arbitrary
position depending on the analyte properties, enabling simultaneous

focusing & separation.
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Introduction
Preconcentration of charged analytes Is often necessary when dealing with
biological fluid samples due to low working fluid volumes and the dilute nature of
many biomolecules of interest [1,2]. Electrokinetic preconcentration methods
which exploit a local balance between ion electrophoresis & bulk electroosmosis
are widely employed In micro & nanofluidics to address this issue [1-3]. These
techniques provide a flexible platform for concentrating and separating molecules
of different size and charge. Using numerical simulations, we show that
nanofluidic channels with wall-embedded transverse electrodes (a configuration
often utilized as transistors and/or diodes) can also be used to stack, focus,
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» Nanochannel and reservoir electrokinetics modeled using COMSOL v5.2a SRR s _—
» Customized mesh accounts for disparate length scales ranging from ~ 0.1 nm 2?5% | s 0 om |
tO - 1mm (7 Orders Of magnltUde) Normalized Distance Along Channel Q:
» Transverse EDL potential governed by Poisson’s Equation, modeled with
“Coefficient Form PDE” module

» Potential within channel from applied electric field determined by current
conservation using “Electric Currents” module
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Conclusions

» Nonuniform axial electric fields induced by field-effect surface
charge modulation in nanochannels can be leveraged for stacking,
focusing, & separation of analytes

» Method allows for tunable, stationary sample preconcentration by
varying the potential applied to an embedded gate electrode

» Can potentially achieve up to hundred-thousandfold concentration
enhancement for certain analytes

» Less dispersion and greater enhancement than microchannel-based
methods [1,3] without the need for multiple electrolyte solutions
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Figure 2. 2D COMSOL Multiphysics model, with governing equations and boundary conditions used
in our numerical simulations.
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