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Abstract

Quantum Hydrodynamic Theory (QHT) provides an excellent method to study both near-
field and far-field properties of multiscale plasmonic systems, especially for systems
whose sizes make it computationally prohibitive for the density functional theory
approach [1]. The microscopic behavior of these structures significantly differs from the
classical predictions due to nonlocal or quantum effects. QHT can accurately and
efficiently describe both the plasmon resonances and the spill-out effects of microscopic
as well as macroscopic plasmonic structures by including the nonlocal contributions of
the kinetic energy and correct asymptotic description of the electron density. The
hydrodynamic equation of motion of an electronic system when coupled to the Maxwell
equations leads to the following set of equations:

VXVXE — w?/c2E=Ww?.P 1(a)

cno/me V(8G/8n)+Hw?+iyw)P=-gowp3E 1(b)

where the variables represent the usual quantities. The energy functional G[n] can be
written as the sum of Thomas-Fermi kinetic energy T1, von Weizsacker kinetic energy T2
and exchange-correlation potential energy E of the electronic system, as:

G[n] = Ta[n] + T2[n, Vn] + E[n] (2)

The terms appearing in the above equation are nonlinear function of charge density n and
its gradient Vn and are explicitly expressed in [1].

We have used COMSOL Multiphysics® to implement a numerical resolution of Egs. (1). In
particular, by taking advantage of the symmetry of the geometry, we assume an azimuthal
dependence for the fields of the form exp(-im@), where m&Z, i.e., a vector field v can be
written as v(p,$,2)=> v(p,2)exp(-im¢) We analytically take out this azimuthal dependence,
which makes the problem quite convenient to solve. This formalism is usually referred to
as 2.5D technique [2], and allows to solve only (2m_max+1) 2D problems instead of solving
a 3D problem, thus, significantly reducing the computational load in terms of memory and
processing time. 2.5D implementation needs all fields to be expressed in terms of a
azimuthal mode number m. By using this modeling technique, we numerically solve the
system of Egs. (1).

As an example of application for our model, we report in Fig. 1 calculations for a plasmonic
nanoshell system. The induced charge density as a function of radial distance at the lower
and the higher energy resonant mode is shown in Fig. 1(a) and Fig. 1(b), respectively.
Electric field norm and charge density at the cross-section plane are also shown in the
insets. The spill-out effects can be clearly seen at the inner and outer boundaries of the
nanoshell.
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Figure 1:Induced charge density at (a) lower (b) higher energy resonance mode. Electric
field norm and induce charge density for the two modes at the cross-section plane are

depicted in the inset.
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