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Abstract: Identifying molecules requires 
associating molecular structures with their 
electronic energy levels. In this paper we 
introduce a novel technique for the calculation of 
molecular Rydberg levels. The technique allows 
for easy visualization of the associated 
wavefuntions to make unambiguous 
assignments. The value calculated for the 3p 
state of trimethylamine is most closely in 
agreement with recent experimental data. The 3s 
state was also calculated. The method, which 
should be extendable to all Rydberg-excited 
molecules, appears to increase in accuracy for 
higher-lying states. 
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1. Introduction  
 

In quantum mechanics there are very few 
analytically solvable problems. One of the more 
famous ones is the Hydrogen Atom. In this study 
we liken more complicated molecules, like 
trimethylamine, to the hydrogen case, noting that 
these many-electron-containing molecules can be 
excited into a regime where there is a single 
electron acting as if it were orbiting around a 
molecular core with a frozen charge distribution. 
Such highly excited states are known as Rydberg 
states.1 We calculate the electron binding 
energies associated with the Rydberg states of 
different molecules using quantum chemical ab 
initio calculations to compute the core charge 
distribution and compare our computational 
spectra with experimentally measured 
eigenvalues. We also discuss aspects of using 
and importing the results from such calculations 
into COMSOL. 
 
2. Governing Equation  
 

Electronic behavior is governed by a PDE 
known as the Schrödinger equation: 
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with Drichlet boundary condition u = 0 at ∞.   
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h  
and 

! 

m  are constants. 
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u  is referred to as the 
wavefunction. In quantum mechanics, 
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u
2 is the 

probability density of finding the particle at 
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r  
and as such, 
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u
2
dr" =1. 
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V  is a potential energy, which in our treatment 
depends on the frozen core charge density 
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where NR  represents the nuclear positions, and 

! 

e  is the unit charge. 

! 

"  is the energy eigenvalue 
we are solving for. 
 
3. Theory 
 

We are approximating this many-electron 
problem as a combination of an excited-state 
single electron problem and a separate ground-
state multi-electron problem. It is much easier to 
solve for the electric potential induced by the 
ground state of the molecular core than it would 
be to calculate the desired high lying eigenvalues 
of the whole molecule using Hartree-Fock or 
DFT self-consistent field based methods. Thus 
we use standard computational chemistry 
techniques to calculate the former and then 
import the resultant potential into COMSOL to 
provide us with the later. One can think of our 
problem as analogous to a particle in an external 
field, the field defined by the three-dimensional, 
not necessarily symmetric, result from the 
computational chemistry calculation. 

The justification for this analysis is that 
Rydberg states have a single electron excited into 
a distant regime from where the molecular core 
looks much like a point charge. At large distance 
there is little correlation between the bound 
electrons and the Rydberg-excited electron. In 
practice that means that the root mean square 
distance of the Rydberg electron from the center 
of charge r   
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must be of the order of or greater than the size of 
the molecular core. Our calculations can be seen 
as both a test of this approximation and as 
probing the viability of the electronic potential 
computed by Gaussian’s PRISIM algorithm.2 

 
4. Methodology 
 

We chose to work within standard atomic 
units as the system sets   

! 

h , 

! 

m , and 

! 

e  to 1. In 
this system the bohr (0.529 x 10-10 m) is the 
length unit, and our Drichlet boundary, forming 
a spherical box, set to 50 bohr. 

! 

V , defined as an 
imported  interpolated function over a three 
dimensional spatial grid, was derived from a 
DFT calculation run in GAUSSIAN 033  on the 
cationic state after parsing the data using the 
GAUSSIAN routine cubegen and some self-
written MATLAB4 scripts. Once the model was 
defined using the COMSOL GUI we utilized the 
PARDISO linear solver, due to its suitability and 
speed5, in COMSOL’s predefined Schrödinger 
equation  and eigenvalue modes.  

All calculations were done on 8-cores of the 
Brown Chemistry Department’s UNIX 
Supercomputer with 4 GB of RAM.  
 
5. Numerical Models 
 

For the calculation of Trimethylamine 
(TMA) eigenvalues we used two GAUSSIAN 
cubes, one spanning from -50 bohr to 50 bohr in 
all directions, with a resolution of one evaluated 
electric potential point per bohr in each Cartesian 
direction and the other with an algorithmically 
optimized “normal” cube that spanned from        
-8.666 to 8.666 , -8.75 to 8.75, and -6.5 to 6.5 
bohr with 6 points per bohr resolution. The 
geometry [fig. 1] is such that the inner cube has 
the dimensions of the second cube above and 
implements that cube’s 

! 

V  while the rest of the 
spherical box implements that of the first 
GAUSSIAN potential cube, not utilizing all the 
potential points that lie outside its boundary. We 
then meshed the system under “normal” settings 
and set the inner cube’s mesh element growth 
rate to 1 and that of the outer sphere to 50. We 
then solved, using the adaptive solver on default 
settings for 20 eigenvalues around -0.09 a.u., 

yielding only a few negative eigenvalues, of 
which we selected the wavefunction whose 
eigenvalue was closest to the experimental and 
computational values6 and stored it as the initial 
condition of the system. This wavefunction was 
then mismatched with the -0.09 eigenvalue and a 
new batch of eigenvalues was returned. This 
process was repeated iteratively in the hope of 
getting solutions reminiscent of the expected 
eigenvalues and orbital character. We utilized 
quadratic Lagrange quadrature, as it was the 
highest order supported by the adaptive solver. 

The GAUSSIAN calculations were at the 
B3LYP 6-311+** level and the molecular 
geometry was taken from microwave data,7 as 
this configuration lead to the DFT results closest 
to experiment for the low lying Rydberg states 
calculated.6  

The true hydrogen potential, evaluated 
analytically, and as an interpolated function on 
the same grid as TMA using a MATLAB script, 
was also run on the same solver and mesh 
settings, to provide a standard via which to 
examine the numerical accuracy of the model. 
The analytic potential was a point charge at the 
origin. We avoided the singularity there, in the 
grid case, by extending the TMA grids so they 
had an even number of entries in each direction.  

 
 
Figure 1. The geometry over which TMA eigenvalues 
were calculated; inner block measures (17, 17, 13), 
and the sphere is of radius 50. 

 



 
 

Figure 2. TMA molecular geometry: [Left] 
(GAUSSIAN): blue is nitrogen, gray is carbon, and 
white is hydrogen. [Right] (COMSOL) Plotting the 
4.8% greatest values of V yields a visualization of the 
nuclear coordinates. 
 
5. Results and Discussion 
  
5.1 Hydrogen-like Orbital and Wavefunction 
 

The wavefunctions associated with 
Hydrogen are used to describe Rydberg orbitals. 
Those in the range of energies probed are 3s and 
3p, with the distinctions based on l , the number 
of angular nodes. An s orbital is an orbital with 
spherical symmetry (no angular node). A p 
orbital has one angular node and higher order 
orbitals than these follow the alphabet and 
increase in the number of angular nodes (d, f, g, 
h). The number of radial nodes is 2- l . 
Visualizing the wavefunction allows easy check 
of experimental assignment. 
 
5.2 The Trimethylamine 3s Orbital 
 

The 3s eigenvalue we calculated was            
-0.1221 a.u., falling within 7.6% of the 
experimental and within 3.7% of the theoretical 
values (-0.1134, -0.1176).6  The value of         for 
this state is 3.917 bohr. This wavefuction can be 
visualized [fig. 3] and assigned [fig. 4] using 
COMSOL.  
 

The       value tells us that our wave function 
lies about half outside of the molecular core [fig. 
2]. Its general proximity to said core and lack of 
node at the origin probably contributes to its 
relatively high percent error. 
 

 

 
 

 
 
Figure 3. The normalized 3s wavefunction of TMA, 
plotted using 30 isosurfaces. The square of the value 
of the wavefunction is the probability density for the 
electron to be found at one of the elements on that 
level. This wavefunction has spherical symmetry 
outside of the core and, accordingly, s-like character. 
 

 
Figure 4. The 3s wavefunction of TMA. Two 
isosurfaces are plotted, corresponding to the 
wavefunction value 

! 

± .01. Red is positive, blue is 
negative. We can see two spherical nodes: one on the 
nitrogen, and another round of nodes on the carbon 
atoms.  
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5.3 The Trimethylamine 3p Orbital 
 
 The 3p eigenvalue was -0.0815 a.u. falling 
within 1.5% of the experimental 3px,y and 0.6%  
of the 3pz and within 11.9% and 6.4% of their 
respective theoretical values (-0.0827, -0.0810,   
-0.0925, -0.08713).6 Those theoretical values 
were within 10.6% and 7.0% of their associated 
experimental value, and as such, this eigenvalue 
represents the TMA 3p state [fig. 5] with greatest 
agreement with experiment yet calculated.         
for this state is 4.038 bohr. 

 
 
Figure 5. The 3p wavefunction TMA. Two 
isosurfaces are plotted, corresponding to the 
normalized wavefunction value 

! 

± .01. Red is positive. 
Note the nodal structure (both one spherical and one 
planar node) and that it is a 3px state as it lies along 
the x-axis. The axes are the same lengths as [fig. 2]. 
 
 This        value tells us our wavefunction also 
lies about half outside of the molecular core [fig. 
2] but its node at the origin probably leads to its 
increased accuracy. It also appears that, looking 
at the percent errors, our px state is closer to the 
assigned 3pz state and thus casts some doubt on 
the assignment of the lower energy state to the 
3pz.  
 
5.4 Hydrogen Atom Baseline 
 

The analytical hydrogen [fig. 6] data points 
to a very low solver inaccuracy. Eigenvalues 15 
to 20 increased in error as a boundary artifact, as 
they are diffuse states in a 50 bohr spherical box. 

The low lying p and d states have almost no error 
and the error in 2s and 3s probably stem from 
their lower         and tendency toward a high field 
region, where numerical integration errors are 
compounded. The node of the p and d states at 
the origin probably contributes to their lower 
error, as well. The incredibly low error for the 
14th 4s -0.03124 a.u. eigenvalue is because that is 
the first s state to rest firmly outside of the core, 
as its    value of 25.144 bohr avoids the 
singularity at the center, but is not diffuse 
enough to strongly feel the edge effects. 

 
 

 
 
Figure 7. Analytic hydrogen solutions using the 
TMA solver and mesh settings. Eigenvalue 1 is the 2s, 
2-4 are 2p, 5 is the 3s, 6-10 are 3d,11-13 are 3p, 14 is 
4s, 15-17 are 4f and 18-10 are 4d.  The data points are 
labeled with their eigenvalues. 
 

The interpolated hydrogen [fig. 8] data 
shows the level of total error associated with the 
mesh, grid, and solver. Including the grid in 
these calculations appears to increase the error 
by only about an order of magnitude. The reason 
the order of s, p, d, and f states are now inverted 
is probably because of the artificial truncation of 
the singularity at the origin. The maximum V 
value for this run was 6.928 a.u., and this lack of 
dominant potential at the origin provides impetus 
for more diffuse wavefunctions.  

It should also be noted that, in hydrogen, the 
higher the excited state the greater the accuracy. 
Our method of computing has exactly the 
opposite scaling effects as conventional ab initio 
calculation techniques. 
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Figure 8. Interpolated hydrogen solutions using the 
TMA solver and mesh settings. Eignvalue 1-3 are 2p, 
4 is the 2s, 5-9 is the 3d, 10-12 are 3p, 13 is 3s, 14-19 
are 4f, and 20 is 4d. The data points are labeled with 
their eigenvalue. 
 
6. Conclusion 
 

Further analysis of the error; further 
improvement of solver, grid, and mesh settings; 
and a more effective algorithm to calculate 
bound (negative) eigenvalues are still needed 
before this becomes an optimal method for the 
calculation of Rydberg states. Regardless, the 
calculations show great promise and have 
provided accurate Trimethylamine eigenvalues. 
Further calculations should be done for 
Trimethylamine: both exploratory for new 
eigenvalues and as an analysis of the effects of 
different molecular core basis sets towards the 
accuracy of this general method. Besides these 
general improvements, this is a completely 
extendable method and could be utilized to probe 
the eigenvalues associated with the Rydberg 
states of any and all molecules of interest.  
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