Presented at the COMSOL Conference 2009 Milan

EUROPEAN COMSOL CONFERENCE 2009

Milan October 14-16, 2009

HANDLING TESSELLATED FREE SHAPE OBJECTS WITH A MORPHING MESH PROCEDURE IN COMSOL MULTIPHYSICS®

Pasquale Franciosa

Dep't of Mechanical Engineering for Energetics Univ. of Naples, Federico II - Italy Salvatore Gerbino

Univ. of Molise School of Engineering - Italy

Outline

Introduction and Aims

□ Morphing Mesh Approach

□ Matlab[®] GUI

✓ Comsol[®]-Matlab[®] interface

□ Case Studies

□ Final Remarks

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

Introduction and Aims

- Tessellated mesh model commonly used in Reverse Engineering applications, Digital Replication for Rapid Prototyping, Computer Graphics
- □ In some cases, mesh model can be used as it is,
- ... instead, in several other applications, it needs to be postprocessed

During the re-design stage, continuous geometry changing are needed

Introduction and Aims PRIN Project* 2006-2008

*PUODARSI - Product User-Oriented Development based on Augmented Reality and Interactive Simulation

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

... in this work

□ Re-design loop:

✓ Free Shape Modeling (mesh-based)

✓ Running Numerical Simulation

✓ Viewing Simulation Results-Updating Geometry (interactively)

□ Comsol Multiphysics[®] - Matlab[®] Integration

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

Free Shape Modeling

Aim: update geometry interactively (mesh-based)
How: by picking few control points from the imported geometry

Solution:...

... Morphing Mesh Procedure

Defining control points

✓ User input (picking from graphical interface)

Defining influence hulls

✓ User input (ellipsoid domain)

Defining weight function

✓ User input (based-bezier shape)

☐ Merge Shapes

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

Running Numerical Simulation

□ Fluid Dynamic simulation

- Laminar Navier-Stokes Comsol® Application mode
- ✓ External flows
- □ Create geometry
 - Converting mesh geometry to Comsol® geometry object
 - In Comsol® importing procedure may generate some errors, that user cannot easily control
 - Internal Comsol® functions ("face3" and "geomcoerce" used)
 - Creating fluid geometry domain (bounding box)

Run simulation

Matlab® Programming ProMESH Interface

MatLAB® Programming ProMESH Interface - Movie

ProMESH 3.0

by P. Franciosa, S. Gerbino

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

Applications Imported Closed Domain

Inlet velocity	16.0 m/s
Outlet pressure	0.0 Pa
Shape function	linear
Density	1.19 kg/m³
Dynamic viscosity	1.85·10 ⁻⁵ Pa⋅s

... original geometry: sphere (D=100mm)

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

Applications Imported Opened Domain

Max: 0.696 Max: 1.283

1.2

0.8

0.6

0.2

(m/s)

-0.2

(Pa)

Inlet velocity	1.0 m/s
Outlet pressure	0.0 Pa
Shape function	linear
Density	1.19 kg/m³
Dynamic viscosity	1.85·10 ⁻⁵ Pa·s
Thickness	5.0 mm

... original geometry: planar surface (bxh=200x100mm)

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009

Franciosa, P., Gerbino, S.

(m/s)

1.2

0.8

0.6

Min: 1.471e-6

(m/s)

Final Remarks

- □ Morphing Mesh for free shape modelling
 - ✓ Control point
 - ✓ Influence hull
 - ✓ Weight function
- □ Matlab®-Comsol® integration
- □ ProMESH tool to easily manage tessellated models
 - Importing tessellated models
 - ✓ Morphing geometry
 - ✓ Running simulation
 - ✓ View results & updating geometry

Future Improvements:

- Decimation algorithm:
 - ✓ to easily manipulate imported tessellated models
- □ Re-meshing (mesh optimization) algorithm:
 - ✓ to improve mesh quality of imported tessellated models

Thanks for your attention!

Questions?

Pasquale Franciosa pasquale.franciosa@unina.it

Salvatore Gerbino salvatore.gerbino@unimol.it

EUROPEAN COMSOL CONFERENCE 2009 - Milan October 14-16, 2009