

Presented at the COMSOL Conference 2009 Milan

- Company presentation
- Induction principle of Cage System[®]
- Study parameters
- Other version
- Conclusion and future

- Licensing out of innovative molding technologies
- Headquarter in FR & Technical Office in FR + India
- Sales offices in US and JP
- Listed on French stock market NYSE Euronext

Target Markets

- AUTOMOTIVE / TRANSPORTATION
- SPORT AND LEISURE
- AEROSPACE
- EMERGING MARKETS
 - 3C (Laptop, Flat TV...)
 - Food Packaging
 - Metal Processing

Tool Surface Heating Technology

- Inductive heating process
- Fast heating of the molding surface
- Fast cooling of the tool
- Accurate temperature control

Cage System[®] inductive principle

Mould heating is directly initiated on the molding surface

Study steps

- EΜ ΤН Qsav
- Re-computing of source term (instead of Q_{sav}) Time harmonic but F not relevant (MF range)

•

- Bands representation of the inductor (currents density as Cst) ٠
- Material parameters as Cst (Electrical resistivity ρ_e and Relative permeability μ_r)
- TH specifications
 - Free convection negligible

• Weak coupling between EM and TH (linear mode)

Use of boundaries impedance

Material parameters as Cst (Thermal conductivity λ ; Density ρ_{ν} • and Specific Heat C_p)

9

- Global mesh size : normal
 - 10mm on copper surfaces (inductor and external frame) •
 - 5mm on steel surfaces •
- Model : 1.150.000 elements
 - EM: 725.000 dof and 21' for computing •
 - TH: 135.000 dof and 2' for computing •

• Heat Cycling $50 = >140^{\circ}C$ in 60''

- Global mesh size : normal
- Model : 235.000 elements
 - EM : 785.000 dof and 2h15' for computing
 - TH : 195.000 dof and 5' for computing

A better physical interpretation with coarse mesh seems identical than weak physical representation with a fine mesh

- Linear mode
- Global mesh size : normal
 - 20mm on copper surfaces (inductor and external frame)
 - 5mm on steel surfaces and 1mm on curved zones
- Model : 915.000 elements
 - EM : 530.000 dof and 78" for computing
 - TH : 115.000 dof and 60" for computing

Electric insulation

Magnetic insulation

Interesting but limited with non symmetric geometry or coil with more helicity

- Potential version : more realistic currents distribution (Linear mode)
- Global mesh size : normal
 - 10mm on copper surfaces (inductor and external frame)
- Model : 575.000 elements
 - EM: 410.000 dof and 265" for computing •
 - TH: 50.000 dof and 24" for computing •

Interesting for an accurate distribution of currents density on the band configuration

- Limit of the use of Zf
- Limit of the use of magnetic insulation (external boundaries conditions)
- Cooling 3D
- Optimization module

Thank you for your attention !

For more information

feigenblum@roctool.com

www.rocTool.com