Numerical Modelling of a Free-Burning Arc in Argon

 A Tool for Understanding the Optical Mirage Effect

 A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

 in a TIG Welding Device}
J.M. Bauchire, E. Langlois-Bertrand, C. de Izarra

GREMI, UMR 6606 CNRS/Université d'Orléans, France

INTRODUCTION - Electric Arc \& TIG Welding Device

- Electric arcs at atmospheric pressure are thermal plasmas with:
- High energy density
- High temperature
- High light emissivity
- High electric current intensity

- Standard diagnostic of electric arcs: emission spectroscopy

INTRODUCTION - Experimental Observation

- As lens is shifted upward, cathode tip is still visible, whereas the lens optical axis is above the nozzle exit...!

Rays of light, emitted from the cathode tip, are bent when passing through the plasma. Optical mirage effect...?

Numerical modelling of the electric arc + ray-tracing...

Free-Burning Arc Simulation - General Assumptions

Axisymmetry- Flow
- Inlet and surrounding gases
- Temperature
- Radiative losses
- Gravity effect
- Electrode erosion, electrode sheath
- Electric current
$\Rightarrow 2 \mathrm{D}(\mathrm{r}, \mathrm{z})$ simulation
\Rightarrow Laminar and steady-state
\geqslant Argon at atmospheric pressure
\Longrightarrow Local thermodynamic equilibrium
\Rightarrow Net emission coefficient method
\longrightarrow Not taken into account
\geq Not taken into account
$\Rightarrow D C$
- Laminar Non-Isothermal Flow
- Weakly Compressible Navier-Stokes

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \\
& \rho \frac{\partial \mathbf{u}}{\partial t}+\rho(\mathbf{u} \cdot \nabla) \mathbf{u}=\nabla \cdot[-p \mathbf{I}+\tau]+F
\end{aligned}
$$

\geq Explicit coupling

- General Heat Transfer

$$
\vec{J} \cdot \vec{E}-U_{r a d}
$$

$$
\left.\rho C_{p}\left(\frac{\partial T}{\partial t}+(\mathbf{u} \cdot \nabla) T\right)=-(\nabla \cdot \mathbf{q})+\tau: \mathbf{S}-\left.\frac{T}{\rho} \frac{\partial \rho}{\partial T}\right|_{p}\left(\frac{\partial p}{\partial t}+(\mathbf{u} \cdot \nabla) p\right)+Q\right)
$$

- Meridional Induction and Electric Currents, Potentials

$$
\begin{gathered}
-\nabla \cdot d\left(-\sigma \mathbf{v} \times(\nabla \times \mathbf{A})+\sigma \nabla V-\mathbf{J}^{\mathbf{e}}\right)=0 \\
\nabla \times d\left(\mu_{0}^{-1} \nabla \times \mathbf{A}-\mathbf{M}\right)-d \sigma \mathbf{v} \times(\nabla \times \mathbf{A})+d \sigma \nabla V=d \mathbf{J}^{\mathbf{e}}
\end{gathered} \Leftrightarrow \begin{aligned}
& \vec{\nabla} \cdot \sigma \vec{\nabla} V=0 \\
& \vec{A}=\mu_{0} \vec{J}
\end{aligned} \Longrightarrow \begin{aligned}
& E=-\nabla V \\
& \vec{J}=\sigma \vec{\nabla} V \\
& \vec{B}=\vec{\nabla} \times \vec{A}
\end{aligned}
$$

Thermodynamic properties \& transport coefficients depend on temperature

\geqslant Implicit coupling

Electric potential (V)

\geqslant Good agreement with:

- Experimental results
- Previous simulations based on finite volume method

FREE-BURNING ARC SIMULATION - Results

Anode boundary condition: Insulation

Temperature (K)

Anode boundary condition: T profile
\geqslant Only weak influence on temperature field in cathode and nozzle exit regions

Free-burning arc simulation - Results

- Validation of refractive index gradients
- Mainly for "low" temperatures
- Nozzle region

Refractive index \& index gradients (streamlines)

Anode boundary condition: Insulation

Anode boundary condition: T profile

Max: 2.614e-4
$\times 10^{-4}$

Min: $-3.325 \mathrm{e}-5$

RAY-TRACING - Theory

The ray path in a non homogeneous zone can be calculated with vectorial formulation of SnellDescartes laws:

$$
\frac{d}{d s}(n \vec{u})=\vec{\nabla}(n)
$$

- ds is the curvilinear abscissa
- \vec{u} the unit vector tangent at any point in the trajectory of the light
- \mathbf{n} the refractive index

If the ray of light comes from a point $\mathbf{M}_{0}\left(r_{0}, z_{0}\right)$ with a θ angle between the cathode axis and the ray propagation direction at M_{0} point, we obtained:

$$
\left\{\begin{aligned}
\frac{d r_{0}}{d l} & =n_{0} \sin \theta \\
\frac{d z_{0}}{d l} & =n_{0} \cos \theta
\end{aligned}\right.
$$

This equation system is solved with Euler method

Conclusion

- Demonstration of COMSOL Multiphysics capability to simulate arc discharges
- Still remain difficulties to reach convergence according to boundary condition type (Dirichlet's)
- Success in exporting and post-processing results (for ray-tracing)
- Further works on this subject to improve model and to take into account the electrodes

