

Multiphysics Simulation of a High Frequency Acoustic Microscope Lens

O. Tommiska¹, J. Mäkinen¹, A. Meriläinen¹, J. Hyvönen¹, A. Nolvi¹, T. Ylitalo¹, I. Kassamakov^{1,2}, A. Salmi¹, E. Hæggström¹

¹Department of Physics, Division of Materials Physics, University of Helsinki, Helsinki, Finland

²Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland

23.10.2018

Introduction

- Scanning acoustic microscope (SAM)
 - Performs a point scan using a focused ultrasound pulse

Introduction

- Scanning acoustic microscope (SAM)
 - Performs a point scan using a focused ultrasound pulse
- Focused ultrasound reflects off the object
 - Amplitude
 - Time of flight

Introduction

- SAM transducer-lens system
 - Transducer (piezo)
 - Lens with spherical surface (sapphire)
 - Anti-reflection coating (glass)
 - Coupling medium (water)
- Spherical lens surface focuses acoustic waves
 - Focal length depends on the shape of the lens

Motivation

- SAM uses broadband signal
 - Central frequency 250 MHz
 - Consists of frequencies in range of 130

 370 MHz
- Is focal length same at every frequency?
 - If not, might lead to loss of information
 - Hard to study experimentally

- Acoustic lens shape
 - Imaged using scanning white light interferometric 3D microscope

- Acoustic lens shape
 - Imaged using scanning white light interferometric 3D microscope
- Lens surface profile
 - 3D image rotated around its central axis

Multiphysics Simulation of a High Frequency Acoustic Microscope Lens / Oskari Tommiska

23.10.2018

700

800

- Boundary conditions:
 - I. Low-reflecting boundary
 - II. Boundary load
 - III. Roller
 - IV. Plane wave radiation
 - V. Sound hard boundary
 - VI. Axial symmetry

23.10.2018

Simulation

- Frequency domain simulation
 - Computationally more efficient
 - Sweep frequencies 100 400 MHz with step of 0.5 MHz
- Time domain simulation
 - Comparison with frequency domain results
 - Two sweeps:
 - 1. Frequencies 100 400 MHz with step of 25 MHz
 - 2. Frequencies 100 200 MHz with step of 10 MHz

Frequency domain	Time domain
114	

Analysis of results

- 1D line data set along z-axis
 - Determining the location of intensity peak
 - Wave interference visible in frequency domain results
 - Curve fit to smooth frequency domain results

Analysis of results

- 2D grid data set near expected focus point
 - Gaussian fit to each horizontal line within set
 - Full width at half maximum (FWHM) of each fit defined

Results

- Comparison of results both in time- and frequency domain
 - Location of narrowest focus and intensity peak have similar frequency dependency
 - Time- and frequency domain results correspond to each other

Results

- Frequency dependency of focus width
- Model for measurement data postprocessing

Conclusions

- Simulation results show that focusing of SAM has frequency dependency
- Postprocessing method can be made based on simulation results
 - Enhanced imaging resolution

