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Need for built-in motor spindle

Motorized spindle reduces transmission loss but
compounds thermal effects

I Manufacturing industries - aiming at reducing production
time and increasing productivity

I Conventional spindles (power transmission loss) are
replaced by motorized spindle

I Thermal issues in motorized spindle because of built-in
motor

I Needs external cooling to reduce thermal issues
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Problem definition and objectives

The problem statement is two fold: heat
characterization and spindle coolant channel
optimization

The aim of present work is to
I Estimate heat generation rate of motorized spindle in an

experimental-numerical framework.
I Analyze the motorized spindle in coupled

fluid-thermal-structural simulation framework and optimize
the coolant flow channel for minimizing the thermal
distortion
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Boundary conditions

External forced Coolant flow channel is used to reduce
the temperature of spindle
Navier-stokes equation is used for fluid model
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Boundary conditions

Forced air convection heat transfer coefficient(h1)
based on empirical relation [4]

Rotation(rpm)−→Re(laminar or turbulent)−→ Nu−→ Nu = h1×L
k

Free air convection h2=10 W /m2K

[4] G.G. Raghavendra, M.Tech.Thesis, VTU (2017)

Optimization of milling spindle Mallinath et al. BFW Comsol conference Bengaluru



Introduction Heat characterization by inverse techniques Structural analysis Summary

Boundary conditions

Thermal contact conductance (TCC) coefficient at
contact interface based on empirical relation

The TCC at contact interface is given by [4]

R =
δrace

krace
+
δgap − (Trace − Th)× γ × rh

kair

C =
1
R

TCC between outer race of bearing and housing

TCC between inner race of bearing and shaft

[4] G.G. Raghavendra, M.Tech.Thesis, VTU (2017)
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Methodology

Iterative technique involved in Inverse Methodology [3]

[3] Ozisik, Inverse heat transfer, CRC Press (2000)
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Heat source estimation

Inverse Algorithm Validation for Spindle problem

Knowing sensor point
temperature(Ti ) and

initial guess value (Qi )
Inverse Methodology
is used to estimate

Heat sources

T 1, T2 are outer race temperature of front & rear bearing,
T3 is motor surface temperature
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Heat source estimation

Solution converges to true value
Levenberg Marquadt Method:Irrespective of initial guess value, solution is converging
towards true value with maximum error of 7.64%

True heat sources Q1=250W Q2=100W Q3=250W

Lower initial guess value Higher initial guess value
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Heat source estimation

Actual experimental setup [2]

centre [2] Grama et al, IJMTM, 132, 3–16 (2018)
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Heat source estimation

Heat generation rate from spindle unit are estimated
under steady state condition

Based on experimental temperature heat sources are estimated

4,500 rpm 15,000 rpm
Q1 = 111.28 W Q1 = 238.44 W

Q2 = 37.1 W Q2 = 125.96 W
Q3 = 66.76 W Q3 = 132.69 W

Higher heat generation is observed for higher spindle speed.
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Higher temperature is observed near rear bearing as it
is not cooled
Temperature distribution of motorized spindle at 15,000 rpm
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Coupled fluid-thermal analysis of spindle is validated
from experimental temperatures measured near front
bearing
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Non uniform temperature distribution observed in
current fluid channel at front bearing region
Spindle and coolant channel analysed using COMSOL multi-physics

Maximum temperature variation across
sections E-E and F-F for current spindle
design is 2.98◦C & 4.26◦C
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Optimization of coolant channel leads to almost
uniform temperature distribution near front bearings
The coolant entry and exit angles near the front bearings are made diametrically
opposite

Maximum temperature variation
across sections E-E and F-F for
optimized spindle is 0.87◦C & 1.4◦C
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Coupled fluid-thermal-structural analysis

Boundary condition for structural analysis are provided
through bearing stiffness and fixing collar of housing
For current preload condition, radial stiffness is twice that of axial stiffness [1]

For front & rear bearings, Ka=146.7x106 & 121.6x106 N/m
respectively, for 25◦ contact angle, Kr = 2× Ka
[1] FAG manual, Schaeffler technologies (2010)
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Coupled fluid-thermal-structural analysis

Optimized spindle shows reduced angular distortion
through analysing coupled fluid-thermal-structural
framework using COMSOL multi-physics

Distortion Current spindle Optimized spindle
Axial (µm) 26.49 25.44

Angular (µrad) 12.8 3.23
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Summary

I Heat generation characterization using
Levenberg-Marquardt method.

I Non-uniform temperature distribution near front bearings
has been reduced from 2.5◦C to around 1◦C by coolant
channel optimization.

I Spindle angular deformation is reduced from 12.8 to
3.23µrad in the optimized design.
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Additional Material

Iterative Steps involved in LMM
I Direct heat transfer:-analyse the model with initial guess

value QT = [Q1,Q2,Q3] are vector of unknown parameter
I Objective function, S(Q) =

∑M
i=1 [Testimated − Texperimental ]

2

I Sensitivity matrix, J(Q) =

[
∂T T (Q)

∂Q

]
I The ∆Q for Levenberg-Marquadt method is calculated by

[(Jk )T×Jk +µk×Ωk ]×∆Qk = (Jk )T×[Texperimental−Testimated (Qk )]

where k represent iteration. µk=damping parameter,
ρk=diagonal matrix

I New value of parameter, Qk+1=Qk + ∆ Qk
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Additional Material

Boundary conditions
Fourier law of heat conduction is used for solid heat transfer problem

I The three dimensional governing equation for steady state
heat transfer
∂

∂x

[
∂T
∂x

]
+

∂

∂y

[
∂T
∂y

]
+

∂

∂z

[
∂T
∂z

]
+

Q1

k
+

Q2

k
+

Q3

k
= 0

Q1,Q2,Q3 are heat generation at front bearing, rear
bearing and motor respectively.

I heat transfer at contact interference (Qc)

Qc = C × (A×∆T )

C = Thermal contact conductance, A = Contact area,
∆T = Temperature drop at the contact interface
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Additional Material

Boundary conditions
Fourier law of heat conduction is used for solid heat transfer problem

I Convection heat transfer (Qout ) equation is

Qout = h × (T (x , y , z)− T∞)

Qout = Heat dissipation due to convection,
h = Convective heat transfer coefficient,
T (x , y , z)=Temperature of spindle,
T∞ = Surrounding temperature

I Radiation heat dissipation is neglected in the analysis
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