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ABSTRACT   

The dual-trap optical tweezers is used for deforming and measuring the elasticity of soft particles suspended in aquatic 
buffer. In the experiment the trapped particle was the Red Blood Cell (RBC) swollen to a spherical form. The 3D 
radiation stress distribution was computed by ray tracing, the generalized Lorentz-Mie scattering theory with the T-
matrix and the FDTD via the Maxwell stress tensor. The 3D deformation of the cells was then computed with the elastic 
membrane theory. The calculated deformation can fit to experimental data resulting in cell’s elasticity coefficient. The 
static approach is valid only for small deformation (5-10%). For a large deformation such as that of the RBC, we 
consider re-distribution of the radiation stress on the morphologically deformed cell. This stress re-distribution in turn 
induces subsequent deformation of the deformed cell and new stress re-distribution. The recursive process continues 
until a final equilibrium state is achieved. This iterative computation was implemented with the finite element method 
using the COMSOLTM multi-physics models. The deformation results can fit to the experimental data for cell’s 
deformation up to 20%.  
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1. INTRODUCTION  

 
Mechanical properties of the biological cells in vivo determine the behaviour of the cell for the growth, migration and 
transformation and therefore are equally important as the cell’s bio-chemical properties. Optical tweezers are used for 
manipulating living cells and imposing systematically controlled stress states on the cells to study the constitutive 
response of the cell membrane and cytoskeleton to physical, chemical, and biological environmental conditions [1-3]. 
For the suspended cells Guck et al captured and deformed a Red Blood Cell (RBC) in a counter-propagating two-beam 
optical stretcher for measuring cell’s elasticity, whose modification could results from some clinical diseases [3]. The 
dual trap optical tweezers has been used to apply radiation forces via two beads attached to the cell [4, 5]. In this case the 
mechanical loading is localized in the regions where the beads are bound to the cell. The dual or triple-traps have been 
also applied directly to the cells without attached beads [6-8].  
 
In this paper, we use a dual-trap optical tweezers to trap and deform a RBC swollen to spherical shape with experimental 
results fit to a quantitative analysis of the 3D radiation stress distribution and the corresponding 3D deformation. All the 
previous works [3, 8-10] considered only the static deformation, that is to compute first the radiation stress on the 
trapped cell and then the consequent cell’s deformation using linear elastic theory of membrane. This analysis is valid 
only for small deformation of about 5-10%. However, the RBCs usually undergo much larger deformation. In the case of 
large deformation of the cell, the re-distribution of the radiation stress on the deformed cell should be considered and the 
deformed cell will be further deformed under the redistributed stress. In this paper we consider this dynamic regime of 
the deformation and compute the stress redistributions and the subsequent deformations in a recursive manner until a 
finale equilibrium state is reached. Fit the theoretical prediction to the experimental data results in the elasticity of the 
human RBC membrane when the cell’s deformation is up to more than 20%.  
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2. DUAL TRAP OPTICAL TWEEZERS 

A schematic diagram of the dual-trap optical tweezers setup is illustrated in Fig. 1. A linearly polarized laser beam (= 
1064 nm, 1W, Nd: YVO4 cw laser) was split into two via a polarizing beam splitter (PBS) and recombined by a second 
polarizing beam splitter (PBS) to form two parallel trapping beams focused by an oil immersion microscope objective 
(NA=1.25, 100X) in the interior of the captured RBC, which was swollen to spherical and suspended in saline (150 
mOsm) buffer solution. The optical powers of the two beams can be adjusted by rotating the half-wave (HW) plate. One 
of the laser beams can be laterally shifted by a motorized translational stage (MS). 
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Fig.1. A schematic diagram of the experimental setup. 

 
The distance D between the focal spots was increased from 0 m to 6.34 m in 6 discrete steps. As the cell’s reaction to 
the external load is typically slow, in the experiments we increased the beam separation D stepwise and always allowed 
enough time for the cell to reach equilibrium before the next increase of D. Wide-field images of the trapped RBC along 
the trapping beam axis were captured by a CCD camera with a pre-calibrated length-scale, as shown in Fig. 2a and 2b, 
for the RBCs without drug treatment and with the 1mM N-ethylmaleimide (NEM) treatment for 30 minutes for the 
different separations D. In each step we measured the length of the major axis of the RBC along the direction of the 
beam separation.  

 

 
(a) 

 
(b) 

Fig.2. Images of a trapped and stretched RBC: (a) without drug treatment; (b) with 1mM N-ethylmaleimide (NEM) 
treatment for 30 minutes as a function of the dual beam separation D = 0, 1.27, 2.54, 3.80, 5.07 and 6.34 m (from left to right); 

 
3. 3D STRESS DISTRIBUTION  

 
The radiation stress on the RBC surface associated with the two highly focused trapping beams focused at (x = D/2, y = 
z = 0) can be computed with the geometric optics ray-tracing, the T-matrix approach based on the generalized Lorentz-
Mie diffusion theory (GLMT) [11]. Ideally, the stress can be computed by solving the electromagnetic field using the 
Finite Difference in Time Domain method such as OptiwaceTM and/or the finite element methods, such as the RF module 
Comsol MultiphysicsTM via the Maxwell stress tensor. However, the highly focused Gaussian beams with NA=1.25 need 
to be properly modeled in these software.  
 
The radiation stress is computed by the photon momentum conservation.  According to the Minkowski model the photon 
momentum is proportional to the index of refraction of the material n, P = nE/c with the beam energy E and speed of 
light c, so that  
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where ia
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 and ra


are the unit vectors of the incident, transmitted, and reflected beam, respectively, A is the area 

covered by the beam, P is the beam power and  n = n2/n1. When n1=1.335 of the medium surrounding the cell, and 
n2=1.378 of the cytosol inside the cell, T and R are the Fresnel transmission and reflection coefficient respectively. In the 
case of the RBC, the R of the cell/buffer interface is very small for a large range of the incident angle, about 99% light is 
transmitted, so that the light entering to the cell gains the momentum due to the higher refraction index inside, the 
radiation stress is opposite to the light propagation, and the light exiting the cell losses momentum, the radiation stress is 
along the light propagation. In both cases the direction of 


is outward from the cell.  

 
The results are shown in Fig. 3. When the beam separation D=0, the stress distribution is revolutionary symmetric with 
respect to the z-axis, and there is a crown-shaped region around the equator of the sphere in the x-y plane, on which only 
few or no optical rays incident, so that the stress is low or equal to zero, as shown in Fig. 3a. The width of this region 
depends on the numerical aperture of the trapping beam and the size of the cell. When the beam focus is shifted along 
the x-axis, the stress distribution remains practically unchanged in the range of D < 2 m for a RBC radius of about 7 
m, as shown in Fig. 3b. In the view of projection along the z axis the cell is not elongated along the  x axis. This is in 
agreement with the experimental observation [8] and with the photographs shown in Fig. 2a and 2b for D=1,27–2,54 m. 
When the beam shift D continues to increase the stress is concentrated gradually towards the x-y plane and towards the  
x directions with the magnitude of the stress peaks increasing significantly, as shown in Fig. 3c-3d.  
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Fig. 3. 3D stress distribution (N/m2) on spherical surface of a cell in suspension in the dual-beam optical tweezers with D as separation distance of two 
trapping beams, computed with ray-tracing (a)–(d), with T-matrix (e) and with FDTD (f). The trapping beams of NA=1.25, power P=89mW are along 
the +z-axis. The cell radius = 3.86 m, the refractive index in buffer n1=1.335 and inside the cell n2=1.378  
 
The T-matrix and the FDTD produced similar results as that did the ray-tracing, for the beam separation D = 5.07 m, as 
shown in Fig. 1e and 1f. Their differences were mostly due to the different models for the highly focused beam. The ray 
optics approach is valid approximately as the RBC diameter 2  7 µm is larger than the wavelength =1.06 µm, [1,3, 8, 
9]. In the FDTD, a paraxial Gaussian beam model was used because of the limitation in the interface of the OptiwaceTM 

software. This is a rough approximation for the highly focused beam. On the other hand, in the T-matrix method the 
trapping beam was decomposed into the vector spherical wave-function (VCWF) basis satisfying the vector Helmholtz 
equation with the expansion coefficients computed  by point matching method to match by matching the far field 
distribution of the VSWF expansion to the the TEM00 (or LG00) laser beam in far field [12].   

 



 
 

 

 

 
4  STATIC DEFORMATION 

 
In the “liquid-interior model” [14,15], the RBC consists of a thin membrane containing incompressible fluid (cytosol). 
The RBC memebrane consisting of a phospholipid bilayer, a spectrin filament network and transmembrane proteines can 
be treated as a hyperelastic effective continuum layer. The ratio between the thickness h of the memebrane and the cell 
radius  is h/   1% [3], so that the RBC’s deformation under the radiation stres can be computed using the classical 
elastic membrane theory, in which the membrane is considered to have finite flexural stiffness to resist in-plane tensile 
or compressive forces, but cannot support off-plane bending and twisting forces.  
 
The RBCs were initially swollen from physiological biconcave shape to a spherical shape by the osmotic pressure. Once 
captured by the dual trapping beams, the RBC received an additional radiation stress as external load and was deformed 
to a new state of equilibrium in which the external load is balanced by the membrane internal force. For the spherical 
RBC the equilibrium equations are given by [16]. 
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where N and N are the membrane forces per unit length, applied normally to the boundaries of a differential membrane 
element in the zenith and the azimuth directions, respectively, and S is the in-plane shear force per unit length, tangential 
to the boundaries of the element. One can solve N, N  and S by Eqs. (2.1)-(2.3), and then associate the stresses to the 
local strains prescribed by Hooke’s law in the limit of the linear elasticity. Finally, the deformation of the cell is 
described as displacement vectors of the material points on the membrane and can be solved from the local strain by the 
constitutive equations, which are for the spherical membrane  
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where (u,,w) are the displacement in the directions of the curvilinear coordinate system (U,V,W) centered at the 
differential membrane element, with the W-axis directed inward to the origin of the sphere and (U, V) tangential to the 
zenith and the azimuth directions,  and , and E is the modulus of elasticity and v is the Poisson coefficient representing 
the volume change of the membrane due to the deformation. For small deformation the membrane is isotropic and v=0.5 
approximately. 

 
In the dual-beam optical tweezers the external load r=r(,) is not revolutionally symmetric around the z-axis due to 
the lateral shift of the two beams, as shown in Fig. 3. In this case we can still solve the equilibrium and the constitutive 
equations analytically by using the Fourier expansions of the external load r=r(,) and all other unknown functions in 
Eqs. (2) and (3) with respect to the azimuth angle . The mathematical detail is given in Ref. [17,18]. Figure 4 shows the 
static deformation for the beam focus separation D = 0, 1.26, 2.54, 3.8, 5.08 and 6.34 m, respectively. This prediction 
of cell’s deformation can fit to experimental measurement for small beam separations D<4m. For larger D, higher 
stress and higher deformation, the theoretical prediction of the static deformation is clearly higher than the experimental 
observation. 



 
 

 

 

 

 
 
Fig. 4. Deformation of  a spherical RBC in suspension in the dual-beam optical tweezers with the separation distance of two trapping beams as: First 
raw (from left to right) : D = 0, 1.26, 2.54 m; Second raw (from left to right) D = 3.8, 5.08 and 6.34 m, computed with Eqs. (2) and (3) component–
by-component of the Fourier expansion with respect to azimuth angle [17,18].  
 

5. DYNAMIC DEFORMATION 
 
When the cell’s deformation is significant in the dual-trap optical tweezers, the radiation stress re-distribution on the 
deformed cell’s surface must be considered. Furthermore, the stress re-distribution will lead to cell’s re-deformation, 
which in its turn will lead to new re-distribution of the stress. The process continues until a final equilibrium state is 
reached for a given field of the dual optical trapping beams. However, for the deformed RBC the equilibrium and the 
constitutive equations are no longer as simple as Eqs. (2) and (3). Their analytical solutions would be more difficult. The 
finite element solution in ComsolTM structured mechanics module was then used. To compute the stress distribution we 
embedded our MatlabTM codes for the ray optics approach to the ComsolTM modules. We input to ComsolTM structural 
mechanics module the radius , the membrane thickness h, a test value of the elasticity coefficient E of the RBC 
membrane and the beam separation value D, and selected a uniform deformable moving mesh on the cell surface.  
 
In the optical tweezers the cell is trapped to an equilibrium position where the net force on the cell is equal to zero.  In 
the equilibrium position, the cell’s center will not remain in the focal plane z = 0, but is usually shifted in the direction of 
the laser beam propagation. However, we ignored this slight offset in the calculation of the stress and the deformation, 
for the sake of simplicity, so that in our model the cell was fixed with its center at the origin of the in the coordinate 
system, but the net radiation force applied to the cell is not zero. We had to set six constraints that the 6 poles of 
intersection of the cell surface with the x, y and z axes can move only along the x, y and z axis respectively for preventing 
the cell from shift in the space. This shift was not of interest when computing the cell’s deformation.  
 
We launched the stationary solution solver in the ComsolTM. The stress distribution was first computed by our MatlabTM 
codes, and then the cell’s deformation under the stress distribution was computed by a linear solver SPOOLES. Once 
SPOOLES completed its execution, the cell was deformed along with the moving mesh, so that the stresses on the 
deformed mesh nodes were re-computed using the embedded MatlabTM codes for ray-tracing. Then, the SPOOLES was 
launched again to compute the deformation under the new stress distribution of the deformed mesh nodes. The iterative 



 
 

 

 

process continued until a convergence of the solution was finally reached after 4-5 iterations, and the deformed cell 
reached a final equilibrium state. We found that the cell’s deformation computed in the first iteration of the linear solver 
SPOOLES with the stress distribution on the initially spherical cell is identical to the static deformation computed by the 
analytical method shown in Fig. 4. This agreement validates our ComsolTM solution.  
 
 
 

 
 
 
 
 

Fig. 5 Stress distribution on an initially spherical cell with radius =3.86 m  and beam separation D = 5.07 m  
as the cell is deformed gradually from left to right. Computed in iterations of COMSOLTM modules.  

 
Figure 5 shows the stress redistribution on the cell which was initially spherical but gradually deformed in the iterative 
computations with the beam separation D = 2.54 m. We see in the figure that the peaks of the redistributed stress 
became wider and the peak values decreased as the cell was deformed progressively. This is fully understandable as the 
sections of the membrane, in which the most stress was concentrated went away from the laser beam focus with the 
elongation of the sphere.  
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Fig. 6. 3D deformed shape and its 2D projection along the z-axis of a spherical RBC in the dual-trap optical tweezers computed in the dynamic regime. 
Separation of the two beams along x directions D; Initial spherical cell radius = 3.658 m, refractive index n2=1.378  and that in buffer n1=1.335, 
Eh=23.77 N/m. Power of 89 mW for each beam. The colors encode the radial displacements of the membrane, which are positive (outward from the 
cell) or negative (inward to the cell) 

 
As a result, the final cell’s deformation in the dynamic regime is quit different from that computed in the static regime 
without considering the re-distribution of the stress. The dynamic regime is closer to the physical reality for larger 
deformations. Figure 6 shows the computed final deformation of a spherical RBC in the dual beam optical tweezers as a 
function of the beam separation distance D, in the dynamic deformation regime with the consideration of the stress 
redistribution on the deformed cell. The projections of the 3D shapes of the deformed cells along the z-axis to the x-y 
plane are the ellipses elongated in the x directions as observed in the experiments, and shown in Fig. 2a and 2b. The 
cell’s deformation along the z-axis was not readily observable in the experiments.  



 
 

 

 

The cell’s deformation was described by the length of the major axis of the projection of the deformed cell shapes along 
the z-axis to the x-y plane. We fit the theoretical predicted cell’s deformation to the experimental data. The fitting 
parameters were the product of the membrane elasticity and the membrane thickness Eh and the cell’s initial radius .  
As  can vary in experiments among the group of 30 samples, we took  as a fitting parameter. We found  Eh=15.99 
(N/m) and =3.554µm for the normal RBC’s and Eh=24.39 (N/m) and =3.697µm for the RBCs with the drug 
treatment. The corresponding shear modulus are Gh = Eh/2(1+v) = 5.33 and 8.13 (N/m), respectively.  
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Fig.7. Theoretical prediction fit to experimental data for the length of the major axis as a function of beam separation  D = 0, 1.27, 2.54, 3.80, 5.07 and 
6.34 m;  (a) without drug treatment,  Eh=15.99 (N/m) =3.554 m; (b) with treatment of 1mM N-ethylmaleimide (NEM)  for 30 minutes, Eh=24.39 
(N/m) =3.697 m. Error bars show the root-mean-square standard deviation of the measurements over 30 samples under the same condition. 

 
Our fitting is valid for more than 20% of deformation, measured as a ratio of the elongation of the long axis length to the 
cell’s initial diameter. A RBC in suspension can usually restore its initial shape after such a large deformation [15]. 
When the RBC is elongated by 20%, its membrane parts are not necessarily stretched or compressed by 20%. This is 
similar to a balloon in air, which can undergo a large deformation keeping in a constant volume before explosion. The 
RBC shape deformation can be caused by certain deformations of the membrane parts along with certain simple 
displacements of the membrane elements, so that under 20% elongation the RBC is still in linear elastic deformation 
regime.  
 

6 CONCLUSION 
 
We have implemented calculation of the 3D dynamic deformation of the red blood cell with the finite element method 
and Comsol MultiphycisTM modules along with the embedded ray-tracing codes to compute the stress distribution on the 
deformed cell. Our tool thus combines the geometrical optics and the structure mechanics into the single calculation. 
This allows computing the stress re-distribution and cell’s re-deformation in the iterations. The theoretical predictions fit 
to the experimental data permitting differentiating the red blood cells with and without the drug treatment and obtaining 
the cell membrane’s elasticity coefficients. This approach allows us to evaluate large deformation of RBCs in the dual-
trap optical tweezers up to 20%. Instead of 5-10% in the previous implementations. 
 
Ideally, we should use the RF electromagnetic Comsol MultiphycisTM module along the Structural mechanics module to 
compute the interaction between the field of the laser trapping beams and the deformable trapped particles, which could 
be not spherical but in their natural forms, such as biconcave form of the red blood cells. We should be able to treat the 
entire trapping problem with the Comsol MultiphycisTM modules and let particle floating in the space to be stabilized 
finally in the equilibrium position. To achieve this objective we need the RF module able to model the highly focused 
laser beam and permit a large space domain in the calculation.  
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