
Modeling PIN Photodiodes

Roger W. Pryor, Ph.D., VP Research Pryor Knowledge Systems, Inc.

PIN Photodiode Modeling

This paper presents a new AC/DC Conduction Current Module Model of a PIN Photodiode using COMSOL Multiphysics 4.0a and SPICE

Semiconductor device physics and the associated models are inherently complex for the following reasons:

1. Long-Range Electrodynamic Forces

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range
- 4. Carrier Lifetime (Recombination Rate)

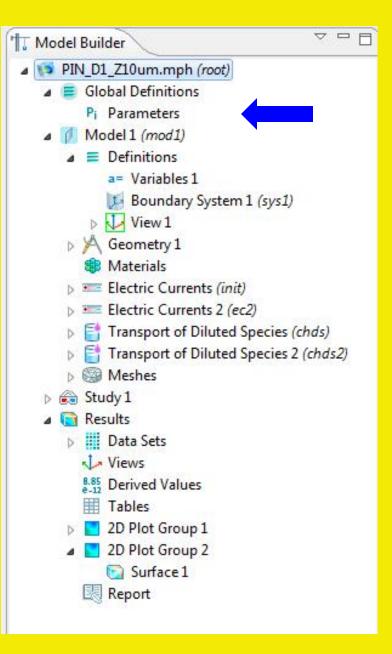
- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range
- 4. Carrier Lifetime (Recombination Rate)
- 5. Intrinsic (Thermally Activated) Carriers

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range
- 4. Carrier Lifetime (Recombination Rate)
- 5. Intrinsic (Thermally Activated) Carriers
- 6. Extrinsic (Artificially Added) Carriers

Semiconductor device physics and the associated models are inherently complex for the following reasons:

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range
- 4. Carrier Lifetime (Recombination Rate)
- 5. Intrinsic (Thermally Activated) Carriers
- 6. Extrinsic (Artificially Added) Carriers
- 7. Carrier Mobilities (Electrons(-), Holes(+))

Roger W. Pryor, Ph.D.

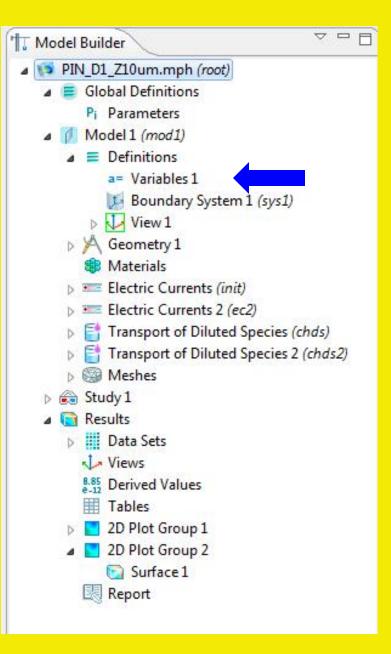

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range
- 4. Carrier Lifetime (Recombination Rate)
- 5. Intrinsic (Thermally Activated) Carriers
- 6. Extrinsic (Artificially Added) Carriers
- 7. Carrier Mobilities (Electrons(-), Holes(+))
- 8. Carrier Diffusivity (Electrons(-), Holes(+))

Semiconductor device physics and the associated models are inherently complex for the following reasons:

- 1. Long-Range Electrodynamic Forces
- 2. Dual Charge Carrier System (Electrons(-), Holes(+))
- 3. Large Carrier Concentration Range
- 4. Carrier Lifetime (Recombination Rate)
- 5. Intrinsic (Thermally Activated) Carriers
- 6. Extrinsic (Artificially Added) Carriers
- 7. Carrier Mobilities (Electrons(-), Holes(+))
- 8. Carrier Diffusivity (Electrons(-), Holes(+))
- 9. Light Generated Carrier Pairs (Electrons(-), Holes(+))

Roger W. Pryor, Ph.D.

Building the PIN Photodiode Model Model Builder Chart Model 1

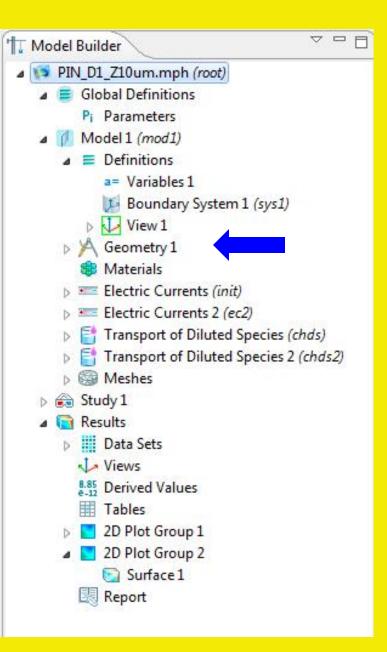

Building the PIN Photodiode Model

Parameters

Parameter	Value	Description				
q	1.602e-19[C]	Elementary charge				
Т	300[K]	Room temperature				
k	1.38e-23[J/K]	Boltzmann's constant				
epsilonr	11.8	Rel. permittivity for Si				
ni	1.46e10[1/cm^3]	Intrinsic concentration for Si				
mun	800[cm^2/(V*s)]	Electron mobility for Si				
mup	200[cm^2/(V*s)]	Hole mobility for Si				
Dn	k*T/q*mun	Electron diffusivity				
Dp	k*T/q*mup	Hole diffusivity				
taun	0.1[us]	Electron life time				
taup	0.1[us]	Hole life time				
с	q/(k*T)	Reciprocal thermal voltage				
y1	7[um]	Diode dimension				
x1	10[um]	Diode dimension				
ju	1[um]	Junction depth				
ac	4[um]	Anode dimension				
NApmax	1e17[1/cm^3]	Maximum p-type doping				
NDn	1e15[1/cm^3]	Drift layer n-type doping				
NDnmax	1e17[1/cm^3]	Maximum n-type doping				
ch	ju/sqrt(log(NApmax/NDn))	Doping fall-off constant				
Va	0[V]	Applied voltage				
Vt	k*T/q	Thermal voltage				
Vpsi0	0[V]	Initialization voltage				

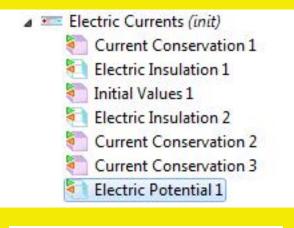
Roger W. Pryor, Ph.D.

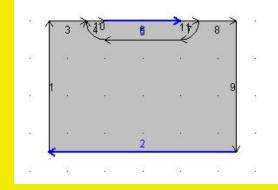
Building the PIN Photodiode Model Model Builder Chart Model 1

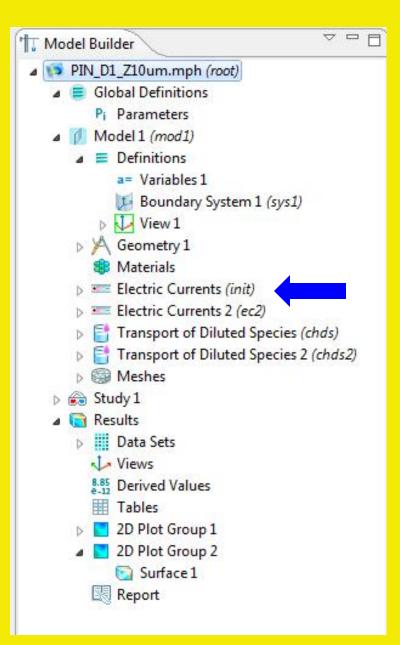

Building the PIN Photodiode Model

Variables

Variable	Expression	Description
Ν	NDn+NDnmax*exp(-((y+y1)/ch)^2)-NApmax*exp(-	Doping
	$(y/ch)^{2}*((abs(x) < ac/2)+(abs(x) > = ac/2)*exp(-((abs(x)-ac/2)/ch)^{2}))$	concentration
n_init	$(abs(N)/2+sqrt(N^2/4+ni^2))*(N \ge 0)+ni^2/(abs(N)/2+sqrt(N^2/4+ni^2))*(N < 0)$	Charge neutrality
		electron
		concentration
p_init	$(abs(N)/2+sqrt(N^2/4+ni^2))*(N<0)+ni^2/(abs(N)/2+sqrt(N^2/4+ni^2))*(N>=0)$	Charge neutrality
		hole concentration
V_psi_init	$1/c*(-\log(p_{init/ni})*(N<0)+\log(n_{init/ni})*(N>=0))$	Charge neutrality
		voltage
RSRH	$(cn[1/mol]*cp[1/mol]-ni^2)/(taup*(cn[1/mol]+ni)+taun*(cp[1/mol]+ni))$	Recombination
		term
sigma_si	q*(cn[1/mol]*mun+cp[1/mol]*mup)	Conductivity of
		doped silicon
cn0	$ni*exp(-(V_psi0/Vt))$	Thermal Eq
		electron
		concentration
cp0	$ni*exp(-(V_psi0/Vt))$	Thermal Eq hole
		concentration
sigma_sip	q*cp0*mup	P domain
		conductivity
sigma_sin	q*cn0*mun	N domain
		conductivity

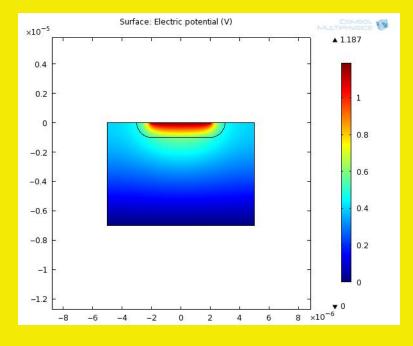

Building the PIN Photodiode Model PIN Photodiode Geometry

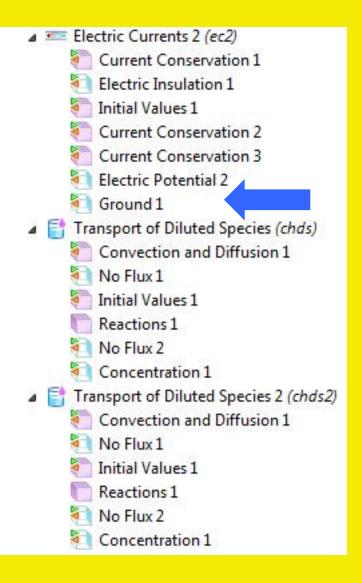

	x10 ⁻⁵												
0.6	- :											÷	: -
0.4	- 22	3	28	85	14	11	3	78	97	-	12	73	53525
0.2			52	<u>.</u>	8	100	1	52		8	10		900- 5 0)
0		12	53	• 7	33	(1)	5	17	8	a a	8	13	
-0.2	2000	12	18	2					÷	<i>8</i> 4	13	2	517 <u>1</u> 0
-0.4	.		15	8	1.		÷	2	. 9	10	13	8	87976
-0.6		÷.	-0	×		ŝ.:	2	65			λ?	14	
-0.8			12	1		100		10	ŝ	8	10	1	
-1		8			a	si.	a.	s)	×	a	6	19	
-1.2	2221	87	10	2	<i>4</i> .		12	12	2	<i>8</i> 4	13	8	517-C
			12	-		0		12			1.		
	<mark>-1.2</mark>	-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1	1.2 x10 ⁻⁵

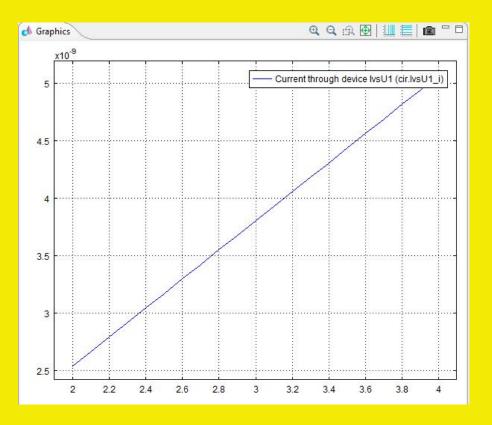


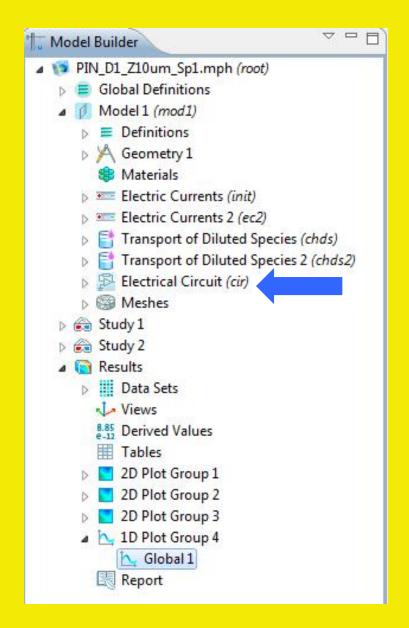
Roger W. Pryor, Ph.D.

Building the PIN Photodiode Model PIN Photodiode Initialization






Roger W. Pryor, Ph.D.


Building the PIN Photodiode Model PIN Photodiode Calculation

Building the PIN Photodiode Model PIN Photodiode Calculation & SPICE

Roger W. Pryor, Ph.D.

PIN Photodiode Model Conclusions

- 1. AC/DC Conduction Current Semiconductor Models can be built in COMSOL Multiphysics 4.0a, using sufficient care.
- 2. Such Semiconductor Models can be used with SPICE, with proper boundary conditions.

Roger W. Pryor, Ph.D.

Thank You!

Roger W. Pryor, Ph.D.