

Particle Velocimetry Data from COMSOL Model of Micro-channels

P.Mahanti^{*,1}, M.Keebaugh¹, N.Weiss¹, P.Jones¹, M.Hayes¹, T.Taylor¹ Arizona State University, Tempe, Arizona *Corresponding author : Prasun.Mahanti@asu.edu

Particle Velocimetry Data from COMSOL Model of Micro-channels

- 1. Brief idea on μPIV
- 2. Evaluating µPIV Algorithms : Challenges
- 3. High quality images for μ PIV algorithms : Using COMSOL
- 4. Results

Velocity Field estimation in Micro-channels

Application Examples

Near wall flow

- (a) Fluid-solid structure interaction
- (b) non-evasive shape determination
- (c) pressure distribution

Electrokinetic flow

- (a) Absolute fluid , absolute particle and relative motions
- (b) Particle migration issues

Biological flow

- (a) Velocity , pressure in living organisms (in vivo)
- (b) Handling , screening of biological samples (in vitro)
- Mixing : Diffusion mixing in microfluidic devices due to laminar flow – impractical time/distance -Flow details and fluid fields of active and passive n

Thermometry : Analysis of Brownian motion of tracers

Exp. Fluids, 2007

ARIZONA STATE UNIVERSITY

Prasun Mahanti COMSOL Conference October 8,2010

Exp. Fluids, 2006

Accurate velocity measurement in microchannels

Flow measurement in micro-channels : Particle Image Velocimetry

Source :

Advances and applications on microfluidic velocimetry techniques Stuart J. Williams , Choongbae Park ,Steven T. Wereley Microfluid Nanofluid (2010) 8:709–726

Micron-Resolution Velocimetry Techniques C. D. Meinhart, S. T. Wereley, and J. G. Santiago Developments in Laser Techniques and Applications to Fluid Mechanics, Springer-Verlag, Berlin, 1998.

Technique	Author	Flow Tracer	Spatial Resolution (µm)	Observation
LDA	Tieu et al. (1995)		5×5×10	4 – 8 Fringes limits velocity resolution
Optical Doppler Tomography (ODT)	Chen et al. (1997)	1.7 μm Polystyrene Beads	5×15	Can image through highly scattering media
Optical Flow using Video Microscopy	Hitt et al. (1996)	5 µm Blood Cells	20 × 20 × 20	In vivo study of blood flow
Optical Flow using X-ray imaging	Lanzillotto et al. (1996)	1 – 20 μm Emulsion Droplets	~ 20 - 40	Can image without optical access
Uncaged- fluorescent dyes	Paul et al. (1997)	Molecular Dye	100 × 20 × 20	Resolution limited by molecular diffusion
Particle Streak Velocimetry	Brody et al. (1996)	0.9 μm Polystyrene Beads	~ 10	Particle Streak Velocimetry
Particle Image Velocimetry (PIV)	Urushihara et al. (1993)	l μm oil droplets	280 × 280 × 200	Turbulent flows
Super-resolution PIV	Keane et al. (1995)	l μm oil droplets	50 × 50 × 200	Particle Tracking Velocimetry
Micro PIV	Santiago et al. (1998a)	300 nm polystyrene particles	69×69×1.5	Hele-Shaw Flow
Micro PIV	Santiago et al. (1998b)	300 nm polystyrene particles	6.9 x 6.9 x 1.5	Silicon Microchannel Flow
Micro PIV	Meinhart et al. (1999)	200 nm polystyrene particles	5.0×1.3×2.8	Microchannel Flow

Micro Particle Image Velocimetry

- 1. Micro-PIV is PIV in micron resolution.
- 2. Conventional microscopy and digital imaging methods.
- 3. Tracer particles 200nm-2um.
- 4. Volume illumination, pulsed, synchronized light source.
- 5. Depth of correlation strongly dependant on the numerical aperture and particle size.
- Prasun Mahanti COMSOL Conference October 8 ,2010

- Position of cross-correlation peak gives mean displacement of the region-of-interest.
- 7. Spatially uniform seeding density preferred.
- 8. Uniformly gridded interrogation regions : uniform sampling of low-pass filtered spatial velocity field components.

COLLEGE of

ARIZONA STATE UNIVERSITY

IBERAL ARTS & SCIENCES

Challenges for μPIV

1. Size of particles very important.

F	ollow the flow	Light scattering
Small particles	Good	Bad
Large particles	Bad	Good

- 2. **Seeding density** problem [Dense field and good tracking vs Noise and particle agglomeration]
- **3. High speed imaging** : Prevent motion blur of particle images and decorrelation of signal due to velocity gradients.
- 4. Spurious vector correction in post processing.

Low particles density Inhomogeneous particles seeding Particles within a vortex Low S/N 3D movement of the particles

5. Mostly steady state flows or periodic flows work best

Would the acquired images work? Would the algorithm work? How good will the algorithm work?

High quality PIV images for algorithm

- 1. More time is spent in acquiring data than in the actual algorithm processing
- Some parameters e.g. Tracer particle size are more difficult to change during an experiment. (more so while using PDMS channels)
- In some cases, the algorithm may not be optimal for the channel or can be made optimal if we know how the particles are going to behave beforehand

CAN WE SIMULATE THE IMAGES BASED ON REAL PHYSICS ?

YES , BUT Closed form solutions from physics for user defined microfluidic experiment is **not** available **ALMOST ALWAYS**

Using COMSOL to generate images

Example : Using COMSOL to generate images

Solutions in polar coordinates

$$V_r = \frac{\partial \phi}{\partial r} = V_c \left(1 - \frac{R^2}{r^2} \right) \cos \theta \qquad V_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -V_c \left(1 + \frac{R^2}{r^2} \right) \sin \theta$$

 ϕ is velocity potential

Ŧ

Ŧ

Ŧ

Ŧ

Equation

 Equiption to real 	
Lyuauon tonn	

Study controlled

Show equation assuming:

Study 1, Stationary

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot \left[-\rho \mathbf{I} + \mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right)\right] + \mathbf{F}$$
$$\rho \nabla \cdot \mathbf{u} = 0$$

	-	
Physical Mod	lel	

Compressibility:

Incompressible flow

Turbulence model type:

None

ARIZONA STATE UNIVERSITY

🔄 Inlet

E	
	E-mailer.

Show equation assuming:

Study 1, Stationary

$$\underline{p} = \underline{p}_0, \quad \left[\mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \right] \mathbf{n} = 0$$

```
    Boundary Condition
```

Boundary condition:

Pressure, no viscous stress

Pressure:

Using COMSOL to generate images

ARIZONA STATE UNIVERSITY

Schools of Engineering

Using COMSOL to generate images

Particle images from COMSOL velocity field

Low Concentration particle image

Streamlines from simulated images

PIV using the simulated images

PIV algorithm using PIVlab - Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB PIVlab code by William Thielicke and Prof. Dr. Eize J. Stamhuis <u>http://pivlab.blogspot.com/</u>

Conclusion

COMSOL was used for generating image sequences to be used for μ PIV based work.

Simulated μ PIV images based on expected physics under idealized experimental conditions and for arbitrary user designed flow circuits.

A good idea of required experimental conditions for efficient image acquisition is obtained.

The proposed method for particle image generation would help in designing better algorithms for μ PIV : Most velocity field estimation algorithms based on imaging there is always a requirement for gold standard images with known velocities and experimental parameters.

References

1.Lindken, R., Rossi, M., Große, S. and Westerweel, J.

Micro-Particle Image Velocimetry (µPIV): Recent developments, applications, and guidelines, *Lab on a Chip*, **9**, 2551-2567 (2009).

- 2. Raffel, M., Willert, C. and Wereley S. Particle image velocimetry: a practical guide, 135-136, Springer-Verlag,(1998).
- 3. Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, DJ and Adrian, RJ, A particle image velocimetry system for microfluidics, *Experiments in Fluids*, **25**, 316--319 (1998).

Thank you !!

