

On The Modelling of Electrowetting in COMSOL MultiPhysics

Introduction

- Electrowetting:
 - Applying a voltage, leading to a change in contact angle.

Introduction Electrowetted displays

• The water is not in contact yet; the oil layer has to break first

Index

• Physics

• Results

Conclusions & recommendations

Physics

- 0/V

- Main physics
 - Electric force
 - Surface tension

Use the *two phase level set* and the *electrostatic* module

• Maxwell stress tensor:

$$T_{ik} = \epsilon_0 \epsilon_r \left(E_i E_k - \frac{1}{2} \delta_{ik} E^2 \right), \text{ where } \quad i = 1, 2, 3 \text{ and } \quad k = 1, 2, 3$$

- -> Volume force
 - $f = \nabla \cdot T_{ik}$
- Permittivity

$$\epsilon_r = \epsilon_{r1} + (\epsilon_{r2} - \epsilon_{r1}) \phi$$

Contact angle $\cos heta = \cos heta_0 + rac{\epsilon_0 \epsilon_r}{2 d \sigma} V^2$

(Transparent) water
Oil without voltage

Physics Analytically

- Assumed:
 - Cylindrical shaped interface with curvature κ .
 - Only pressure due to electric field in y-direction (normal on the initial interface).
 - Volume of the oil is constant.

Results Analytically

Results Geometry

- Simulation
 - 2D:
 - Using the input as used in the analytical (viscosity, surface tension and voltage).
 - Forces should be equal to the analytical.

Results Comparison simulation - analytical

Results

- Simulation:
 - Interface not cylindrical, due to the prescribed contact angle.

Results

Conclusions and recommendations

- Coupling between electric force and volume forces in the Navier-Stokes has been made.
- Good agreement analytical and simulation
- No 3D validation yet, however results are promising
- Still large simulation times due to the large amount of degrees of freedom.

Thank you for your attention!!