

Equation Based Modeling of MOSFET

A. Chakrabarti¹, S. Biswas¹, A. Prabhakar¹, E. Bhattacharya¹ 1. Department Of Electrical Engineering, IIT Madras, Chennai, India

INTRODUCTION: We present a technique to simulate a MOSFET using the PDE interfaces in COMSOL Multiphysics[®]. The idea behind such a methodology is to show the coupling between the semiconductor equations and Poisson's equation.

Figure 1. MOSFET structure shown with 3 cut lines AB, AB' and CD

COMPUTATIONAL METHODS: The variables to be solved for are hole concentration (p), electron concentration (n) and potential (Ψ). The variables p, n and Ψ were solved in the semiconductor domain and only the variable Ψ was solved in the oxide domain. The semiconductor equations are :-

- $1. \quad J_n = qD_n \nabla n + qn\mu_n E$
- 2. $J_p = -qD_p \nabla p + qp \mu_p E$

- $E = -\nabla \Psi$
- 6. $\nabla \cdot E = \frac{\rho}{\epsilon}, \ \rho = q(p n + N)$

These were framed into the Coefficient form PDE interface.

Boundary	p	\boldsymbol{n}	
1	N.A.	N.A.	-4.05 + Vg
2	$n_i exp\left(-\frac{(psi+4.6)}{0.026}\right)$	$n_i exp\left(\frac{(psi+4.6)}{0.026}\right)$	Ψ
3	10 ⁹	10 ²³	-4.1914 + Vd
4	10 ⁹	10 ²³	-4.1914
5	10 ²¹	10 ¹¹	-4.887

Table 1. Boundary conditions for p, n and Ψ

Boundaries 6 and 7 have zero flux boundary condition. In this model, the reference potential is the vacuum level. The potential at any point is given by:

$$\Psi = V_a - \chi - \frac{E_g}{2} + \frac{kT}{q} ln \left(\frac{\frac{N}{2} + \sqrt{(\frac{N}{2})^2 + n_i^2}}{n_i} \right)$$

where V_{α} is the applied voltage at the contact and the other symbols have their usual meanings in the context of semiconductors. A proper choice of initial conditions, solver configuration and adaptive meshing were needed to obtain converging solutions.

RESULTS: The important plots after sweeping V_g (V_d = 0 V) and $V_d(V_g = 5 V)$ have been shown below:-

Figure 2. p - V_a along cut line AB

Figure 3. n - V_g along cut line AB

Figure 4. Ψ - V_g along cut line AB'

Figure 5. Ψ - V_g along cut line CD

Figure 6. Ψ - V_d along cut line CD

The above simulated results are in qualitative agreement with the physics based model.

CONCLUSIONS: This work demonstrates techniques to simulate a MOSFET using the Equation based interface in COMSOL Multiphysics®. This technique will further be extended to study MEMS beam mechanics with coupling structures semiconductor equations.

REFERENCES:

- 1. COMSOL Multiphysics® example "DC Characteristics of a MOS Transistor (MOSFET)" model, "v 3.5a".
- 2. COMSOL Multiphysics® example "The KdV Equations and Solitons" model, "v 5.4".

The authors would like to thank IIT Madras for the provision of the licensed version of COMSOL® and NNetRA for funding Anweshan Chakrabarti.