Solving the Paraxial Wave Equation using COMSOL

Paul Mikulski*
Kevin McIlhany
Reza Malek-Madani

United States Naval Academy Annapolis, MD

* mikulski@usna.edu

Present focus

-Free-space propagation of a Gaussian-beam wave as described by the paraxial wave equation.
-Comparison of analytic solutions to those obtained numerically using COMSOL.

Longer-term interests/goals
-Non-uniform medium, non-linear effects*.
-Part of a broader directed-energy research initiative at USNA (engineering, mathematics, physics).
-Involving midshipmen in research.
*Mark J. Schmitt, "Mitigation of thermal blooming and diffraction effects with high-power laser beams", J. Opt. Soc. Am. B 20, 719-724 (2003) .

The paraxial wave equation

Larry C. Andrews and Ronald L. Phillips
Laser Beam Propagation through Random Media, $2^{\text {nd }}$ ed.

- Start with the standard wave equation.
-Build in beam propagation along the z-axis.

$$
\left\{\begin{array}{l}
\left(\begin{array}{l}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) u=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} \\
u(x, y, z, t)=V(x, y, z) \mathrm{e}^{i(k z-\omega t)}
\end{array}\right. \\
\longrightarrow\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) V+\frac{\partial^{2} V}{\partial z^{2}}+2 i k \frac{\partial V}{\partial z}=0
\end{array}\right.
$$

The paraxial wave equation

-(transverse spreading) \ll (propagation distance).
$-V$ is complex.

$$
\xrightarrow{\qquad\left\{\begin{array} { l }
{ (\begin{array} { l }
{ (\frac { \partial ^ { 2 } } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } } { \partial y ^ { 2 } }) V + \frac { \partial ^ { 2 } V } { \partial z } + 2 i k \frac { \partial V } { \partial z } = 0 } \\
{ V = V _ { 1 } + i V _ { 2 } }
\end{array} } \\
{ }
\end{array} \left\{\begin{array}{l}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) V_{1}-2 k \frac{\partial V_{2}}{\partial z}=0 \\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) V_{2}+2 k \frac{\partial V_{1}}{\partial z}=0
\end{array}\right.\right.}
$$

Lowest-order Gaussian-beam wave

some definitions,

$$
r=\sqrt{x^{2}+y^{2}}, \quad \Theta_{0}=1-\frac{z}{F_{0}}, \quad \Lambda_{0}=\frac{2 \mathrm{z}}{k W_{0}^{2}}
$$

longitudinal phase shift: $\quad \phi(z)=\tan ^{-1} \frac{\Lambda_{0}}{\Theta_{0}}$ spot size radius: $W(z)=W_{0} \sqrt{\Theta_{0}^{2}+\Lambda_{0}^{2}}$
radius of curvature: $\quad F(z)=\frac{F_{0}\left(\Theta_{0}^{2}+\Lambda_{0}^{2}\right)\left(\Theta_{0}-1\right)}{\Theta_{0}^{2}+\Lambda_{0}^{2}-\Theta_{0}}$

Lowest-order Gaussian-beam wave

$$
\left\{\begin{array}{l}
V_{1}(r, z)=+\frac{W_{0}}{W} \exp \left(-\frac{r^{2}}{W^{2}}\right) \cos \left(\phi+\frac{k r^{2}}{2 F}\right) \\
V_{2}(r, z)=-\frac{W_{0}}{W} \exp \left(-\frac{r^{2}}{W^{2}}\right) \sin \left(\phi+\frac{k r^{2}}{2 F}\right) \\
I^{0}(r, z)=V_{1}^{2}+V_{2}^{2}=\frac{W_{0}^{2}}{W^{2}} \exp \left(-\frac{2 r^{2}}{W^{2}}\right) \\
\longrightarrow W(z)=\frac{W_{0}}{\sqrt{I^{0}(0, z)}}=\frac{W_{0}}{\sqrt{V_{1}(0, z)^{2}+V_{2}(0, z)^{2}}}
\end{array}\right.
$$

Lowest-order Gaussian-beam wave

At the location of the beam waist,
-The spot size is a minimum.
-The intensity is a maximum.
-The beam is collimated, $F / F_{0}= \pm \infty$

- Transition from converging to diverging.

$$
\Omega_{f}=\frac{2 F_{0}}{k W_{0}^{2}}, \quad z_{B}=\frac{F_{0}}{1+\Omega_{f}^{2}}, \quad W_{B}=W_{0} \sqrt{\frac{\Omega_{f}^{2}}{1+\Omega_{f}^{2}}}
$$

Punch Line: COMSOL has difficulty passing through the beam waist / collimation.

Setting up the COMSOL run

How best to implement a bounded domain in $x y$?
-Suitable for z range ($0,10 \mathrm{~m}, 2000 \mathrm{~m}$).

- $R_{\text {boundary }}=6 \mathrm{~cm}$.
- $f_{\text {attenuation }}=0.5\left(1+\cos \left[\left(r / R_{\text {boundary }}\right)^{6} \pi\right]\right)$.
- Neumann boundary condition.
-Meshing: extremely fine, refine mesh, 99432 elements.

V_{1} at $\mathrm{z}=5000 \mathrm{~m}$, cylindrical symmetry maintained.

