A Numerical Solution to the Paraxial Wave Equation in COMSOL

Professor R. Malek-Madani ${ }^{1}$, Professor S. Avramov-Zamurovic², K. Jung ${ }^{1}$

1. Mathematics Department, United States Naval Academy, Annapolis MD
2. Weapons, Robotics, and Control Engineering, United States Naval Academy Annapolis MD

INTRODUCTION: The Paraxial Wave Equation (PWE) governs how laser light travels through space. In this study we solved an IBVP using COMSOL and the Galerkin methods and compared the solutions to the analytical free space solution for the Gaussian beam. In COMSOL, we used the coefficient form PDE module with a BDF solver and for the Galerkin method we used a Bessel eigenfunction expansion. The variables displayed in all the graphs are nondimensional. In addition, the propagation distance z plays the role of time in this simulation.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta \bar{V}_{1}-4 M \frac{\partial \bar{V}_{2}}{\partial \bar{z}_{2}}=0 \\
\Delta \bar{V}_{2}+4 M \frac{\partial V_{1}}{\partial \bar{z}}=0
\end{array}\left|\bar{V}_{1}\right| \partial \Omega=\bar{V}_{1}+\bar{V}_{2} i\right. \\
& \left\{\begin{array}{l}
\bar{V}_{1}(\bar{x}, \bar{y}, 0)=0 \\
\bar{V}_{2}(\bar{x}, \bar{y}, 0)= \\
\left.g(\bar{r})=\frac{1}{2}\left(1+\exp \left(-\bar{r}^{2}\right) \cos \left(\pi\left(\frac{r}{a}\right)^{6}\right]\right) \quad M=\pi \frac{W_{0}^{2}}{\lambda F_{0}}\right) g(\bar{r})
\end{array}\right.
\end{aligned}
$$

Figure 1. Gaussian Beam at $z=0.5(250 \mathrm{~m})$ in COMSOL

Figure 2. COMSOL 2D disk mesh with 25970 triangular elements and 104512 degrees of freedom

COMSOL Results: $F 0=500 \mathrm{~m}, \mathrm{WO}=3 \mathrm{~cm}$, lambda $=633 \mathrm{~nm}$ at beam center $(0,0)$

Figure 3. Intensity $\left(\mathrm{V}^{2}+\mathrm{V} 2^{2}\right)^{1 / 2}$ at beam center along propagation axis z

Figure 4. Real part of the solution, V1

Figure 5. Imaginary part of the solution, V2

Bessel eigenfunction expansion: $\quad \bar{V}_{1}(\bar{x}, \bar{y}, \bar{z})=\sum^{\infty}\left(b_{n} \cos \frac{\lambda_{n}^{2}}{4 M} \bar{z}+c_{n} \sin \frac{\lambda_{n}^{2}}{4 M} \bar{z}\right) J_{0}\left(\lambda_{n} \bar{r}\right)$
$b_{n}=\frac{1}{C_{n}} \int_{0}^{a} \bar{V}_{1}(r, 0) J_{0}\left(\lambda_{n} r\right) r d r, \quad c_{n}=\frac{1}{\lambda_{n}^{2} C_{n}} \int_{0}^{a} \Delta\left(\bar{V}_{2}(r, 0)\right) J_{0}\left(\lambda_{n} r\right) r d r$
$C_{n}=\int_{0}^{a} J_{0}\left(\lambda_{n} r\right)^{2} r d r, \quad \lambda_{n}=\frac{j_{0, n}}{a}, \quad n=1,2, \ldots$

Figure 6: Galerkin Method solution (blue) at compared to analytical solution (red) for the intensity, real, and imaginary solutions.

CONCLUSIONS: At the beam center, we observed an offset between the analytical free space solution and the COMSOL numerical solution, especially around the beam's peak intensity. Also, as the beam moves away from its axis of propagation, we observed larger deviation from the free-space solution and the solution of the boundary value problem. The Galerkin Method solution has a similar deviation from the free-space analytical solution.

Figure 7: Beam profile at $\mathrm{z}=1.5$ (750 m)

Figure 8: Beam intensity cross section at $z=1.5(750 m)$ from $-5<x<5$ and $y=0$

