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INTRODUCTION RESULTS
Due to increase in power density of modern electronic chips, - Steady-state conjugate heat transfer model.
there is a need of a higher heat flux removal capabilities. .
An approach based on microchannels for high-heat flux
applications was suggested by Tuckerman and Pease [1].
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Aim is to perform a CFD _study o_f the conyectlve heat = - — - ey
transfer on a single-phase fluid flow in wavy microchannels N -
(Figure 1) to investigate heat transfer enhancement in these P — .
perature contours.
systems.
Numerical simulations are coupled to a methodology based 300K 310K 320K 330K 340K
on local and global energy balances in the device [2] and N ) ’
employ the heat transfer rate instead of Nusselt numbers. (c) Tsotherms.

Figure 2. Results for A=150 um and Re = 100.
MODELING AND COMPUTATIONAL METHODS

Governing equations Fig. 2(a), flow patterns evolve from uniform flow at

the inlet into periodic patterns with streamlines being

Fluid flow in wavy channel: closer to each other near the channel centerline, and
V-u=0 into a new-uniform flow near its outlet.
pr(u -V)u=—Vp+ ,usZu Figs. 2(b) _and 2(c), t_he temperature field transitions
prepru - VT = k72T from a uniform profile and develops (but not in a
' periodic fashion) as the fluid travels along the
Solid (copper substrate): channel advecting energy toward the outlet.
k V2T, =0

» Local and global energy balances in the device
(see Figure 3).
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Discretization and solutions of the governing equations were

obtained via the finite element method (FEM). e
For each geometry under analysis, 3-D unstructured meshes ﬂ p—
with four-node tetrahedral elements were used.
Close to the walls the mesh contains hexahedral elements
enabling a sharp fluid-solid interface representation.
The resulting system of algebraic equations is computed S
iteratively with the generalized minimum residual (GMRES) " ]
solver.
3.6 million elements are used in the computational domain T
comprising both solid and fluid reqiqrn (Figure 1). | “I
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FERY f' .\. | Figure 3. Fraction of influx heat rate transferred at each section for A= pum.
T CONCLUSIONS
g Y | Results show that wave amplitude is not important, but
R the Reynolds number Re, plays a key role in the heat

) . o\t- e e roey
see ey ¥

transfer enhancement of the device and in both the
T e o fluid and solid block temperature that are achieved.
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(a) Typical mesh of channel and solid block domains. (b) Numerical results from grid size.

Figure 1. Typical mesh of computational domain and grid independence tests.
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