Modeling of Silicon Transport into Germanium Using a Simplified Crystal Growth Technique

F. Mechighel[1][3], B. Pateyron[1], M. El Ganaoui[1], S. Dost[2], and M. Kadja[3]

[1]Laboratory SPCTS UMR CNRS, ENSCI, Limoges University, Limoges, France
[2]Crystal Growth Laboratory, Department of Mechanical Engineering, University of Victoria, British Columbia, Victoria, Canada
[3]Department of Mechanical Engineering, University of Constantine, Constantine, Algeria
Publié en 2009

A numerical simulation study, using COMSOL Multiphysics®, was carried out to examine the temperature and concentration fields in the dissolution process of silicon into germanium melt. This work utilized a simplified configuration which may be considered to be similar material configuration to that used in the Vertical Bridgman growth methods. The concentration profile for the SiGe sample processed using this technique shows increasing transport silicon into the melt with time, moreover, a flat stable interface is observed. The mass and momentum equations for fluid flow, the energy and the solute mass transport were numerically solved using COMSOL package. Results showed good agreements with experiments

Téléchargement