Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Theory of Proportional Solenoids and Magnetic Force Calculation Using COMSOL Multiphysics

O. Vogel, and J. Ulm
Heilbronn University
Campus Künzelsau
Künzelsau, Germany

Proportional solenoids are well-known and used in a wide range of applications today. This paper is about methods of influencing the characteristic force-stroke-curves of magnetic actuators by means of different pole geometries. The conical design of the stator pole which is mostly used to accomplish proportional solenoids is analyzed by both a simple analytic reluctance model and a FEM model ...

Lamb Waves and Dispersion Curves in Plates and It’s Applications in NDE Experiences Using Comsol Multiphysics

P. Gómez, J. P. Fernandez, and P. D. García
Hydro-Geophysics & NDE Modeling Unit
University of Oviedo
Mieres, Spain

In this paper, a model for numerically obtaining lamb wave modes and dispersion curves in plates is presented. It is shown that COMSOL Multiphysics can be employed to simulate the behavior of guided waves in dispersive plates, which is useful for NDE applications. A two dimensional steel plate (4x0.1 meters) is excited with a space-time impact point source. To model the point source, we use ...

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Analysis of a Three-phase Transformer Using COMSOL Multiphysics and a Virtual Reality Environment

A.Buchau, and W. M. Rucker
Institut für Theorie der Elektrotechnik
Universität Stuttgart
Stuttgart, Germany

The simulation software COMSOL Multiphysics is applied to the numerical com-putation of the magnetic fields of a three-phase transformer. A three-dimensional model of the geometrical configuration is created with the help of the CAD tools of COMSOL Multiphysics. There, all dimensions of the transformer are defined by parameters. The creation of an optimal finite element mesh is improved by some ...

Simulation of Deep Geothermal Heat Production

E. Holzbecher, P. Oberdorfer, F. Maier, and Y. Jin
Georg-August Universität Göttingen
Göttingen, Germany

Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two legs are connected by highly permeable geological, natural or artificial strata in the deep subsurface. The ...

Current Distribution and Magnetic Fields in Complex Structures Using Comsol Multiphysics

S. F. Madsen, and C. Falkenstrøm Mieritz ApS
Lejre, Denmark

The present paper presents numerical calculations of the magnetic fields and the current distribution within a wind turbine nacelle. The results are used by control system engineers designing panels and cables, who must ensure that the immunity of the equipment complies with the environment within the turbine. Since the release of the International standard concerning lightning protection of ...

3D Simulation of Heat and Moisture Diffusion in Constructions

M. Bianchi Janetti, and F. Ochs
University of Innsbruck
Unit Building Physics
Innsbruck, Austria

The simulation of heat and moisture transfer represents an essential resource in designing energy efficient buildings. In this paper a time-dependent wall model, consisting of several homogeneous domains, with third-type boundary conditions imposed on the surfaces, is implemented in the COMSOL Multiphysics environment. Temperature and moisture content is calculated inside the construction for ...

Excimer Laser-Annealing of Amorphous Silicon Layers

J. Förster, and H. Vogt
Institute of Electronic Components and Circuits
University Duisburg-Essen
Duisburg, Germany

A one-dimensional model of Excimer Laser-Annealing of amorphous silicon layers which are irradiated with a KrF excimer laser is described. For realisation, the application mode heat transfer in solids is used. The model predicts a melt threshold for the energy density of the laser of 88.5 mJ/cm^2. It also predicts a linear increase of the melt duration with a slope of approximately 625 ...

Coupled Electro-thermal Field Simulations in HVDC-Cables

H. Ye, E. M. Boudoudou, E. Scholz, and M. Clemens
Chair of Electromagnetic Theory
Bergische Universität Wuppertal
Wuppertal, Germany

For PE insulated cables both the temperature difference ?T and the electric field coefficient ? have a significant influence on the electric field distribution because PE has a nonlinear electric conductivity which is approximately a function of the temperature and the electric field strength. The coupled electric-thermal simulations are carried out for PE insulated HVDC-cables. The influence ...

Numerical Modeling of Cold Crucible Induction Melting

I. Quintana[1], Z. Azpilgain[1], D. Pardo[2], and I. Hurtado[1]
[1]Mechanical and Industrial Production Department, Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, Mondragon 20500 Gipuzkoa, Spain
[2]Department of Applied Mathematics, Statistics, and Operational Research, University of the Basque Country (UPV/EHU), Leioa, Spain, and IKERBASQUE (Basque Foundation for Sciences), Bilbao, Spain

This paper describes a numerical solution method for the simulation of a cold crucible induction melting (CCIM) process involving the coupling of electromagnetic, temperature and turbulent velocity fields. During the CCIM process, the metal charge is contained on a water cooled segmented copper crucible, and the energy necessary to heat, melt, and overheat the charge is generated by an ...

Quick Search

1 - 10 of 185 First | < Previous | Next > | Last