Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquet des phénomènes électriques, mécaniques, fluidiques et chimiques. utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modelling of a Differential Sensor in Eddy Current Non-destructive Evaluation

A. Rosell[1], and G. Persson[2]
[1]Volvo Aero Corporation, Trollhättan, Sweden
[2]Chalmers University of Technology, Göteborg, Sweden

Interaction between the probe and a defect in eddy current non-destructive evaluation is studied. Evaluation of sensor signal response is the basis for the calculation. In this work a differential sensor is considered and the problem regarded here is problem 8 from the testing of electromagnetic analysis methods (TEAM) workshops. The truncation, referring to the position of the outer ...

Transient Electromagnetic-Thermal FE-Model of a SPICE-Coupled Transformer Including Eddy Currents with COMSOL Multiphysics 4.2

H. Neubert[1], R. Disselnkötter[2], and T. Bödrich[1]
[1]Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Dresden, Germany
[2]ABB AG, Forschungszentrum Deutschland, Ladenburg, Germany

Current transformers are used to measure currents in power grid systems. They are characterized by strong interactions between external electrical sources and loads respectively and the magnetic subsystem. Self-heating due to losses has to be considered because of the temperature-dependent material behaviour. The paper presents a transient 3D FEA transformer model which includes a H(|B|) ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Design and Measurements on a Small Radial Flux Permanent Magnet Generator with Concentrated Coils

Ø. Krøvel, and R. Nilssen
Dept. of Electric Power Engineering, Trondheim, Norway

This paper shows calculations of inductance, induced voltage and torque using COMSOL Multiphysics. Results from cogging torque calculations gave a considerable DC-offset, but the curve shape resembled expectations. The values are compared with experimental data.

Design of Light Emitting Diodes (LED)

E. Baur, M. Sabathil, and N. Linder
Osram Opto Semiconductors GmbH, Regensburg, Germany

For a proper design shaping of light emitting diodes, the exact knowledge of the current distribution in the active area is essential. On the one hand, one has to achieve a uniform current density over the chip area, on the other hand, one has to avoid current crowding in the neighborhood of the electrical contacts. In this paper it is shown first how a LED can be modeled by COMSOL Multiphysics. ...

Time-Harmonic Modeling of Squirrel-Cage Induction Motors: A Circuit-Field Coupled Approach

R. Escarela-Perez[1], E. Melgoza[2], and E. Campero-Littlewood[1]

[1]Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, México, D.F., Mexico
[2]Instituto Tecnologico de Morelia, Morelia, Mich., C.P., Mexico

Finite element modeling of three-phase induction machines requires the solution of coupled circuit and field equations. This work aims to solve this problem using a strong coupling approach.   This work includes circuit field coupling and proper air-gap meshing, using the AC/DC Module of COMSOL Multiphysics and SPICE. As a result, a quasi-3D model can be obtained with an accurate field ...

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

Analysis and Design of Electromagnetic Pump

V. Teotia, S. Malhotra, K. Singh, and U. Mahapatra
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Liquid metal loops are used for heat removal and for the study of certain magneto-fluidic phenomenon like MHD (Magneto-Hydro Dynamic) effects. These loops operate at high temperatures and carry fluids that are invariably toxic in nature. Ensuring the purity of fluid in a closed loop application needs non-intrusive pumps electromagnetic pumps. We have designed and analyzed a prototype ...

Two-Dimensional Quasi–Static Analysis For Induction Motor with Faulty Rotor

M. Manna, and S. Miglani
SLIET
Sangrur
Punjab, India

This paper presents the Finite Element Method technique for predicting performance of Induction motor having Electric and Magnetic asymmetry for rotor cage due to some broken rotor bars. The motor parameters like magnetic vector potential, flux density, surface currents have been determined very precisely by carrying out two dimensional quasi static, transient analysis and by using one of the ...

Pulsed Eddy Current Probe Development to Detect Inner Layer Cracks Near Ferrous Fasteners Using COMSOL Modeling Software

V. Babbar[1], P. Whalen[1], T. Krause[1]
[1]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

Surface breaking cracks in conductive structures can be detected by conventional eddy current techniques. However, it is very difficult to detect inner layer defects in multilayered conductive structures either by conventional eddy current or ultrasonic methods. The transient/pulsed eddy current (PEC) technology can potentially overcome these limitations and is being developed for detection of ...

Quick Search