Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modeling of Anisotropic Laminated Magnetic Cores Using Homogenization Approaches

H. Neubert[1], J. Ziske[1], R. Disselnkötter[2]
[1]Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Dresden, Germany
[2]ABB Corporate Research Center, Ladenburg, Germany

3D-modeling of magnetic components with FEM is challenging due to the involved nonlinearities and coupling effects between different physical domains. A specific issue is the consideration of lamination due to the high resulting element count for thin layers. Therefore, several homogenization approaches for laminated cores have been proposed which replace the laminated structure with a single ...

2D Simulation of Cardiac Tissue

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce ...

Estimation of Hydraulic Conductivity for a Heterogeneous Unsaturated Soil Using Electrical Resistivity and Level-Set Methods

T. K. Chou[1], M. Chouteau[1], J. S. Dubé[2]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]École de Technologie Supérieure, Montréal, QC, Canada

The estimation of the soil saturated hydraulic conductivity (Ks) is crucial in understanding water flow and transport of contaminants. There are many hydrological techniques available in determining this parameter (constant head method, in-situ soil analysis, etc...). While these techniques can provide quality data points, they are often limited by sparse data sampling and scale. Therefore ...

3D Acoustic Streaming Field in High-Intensity Discharge Lamps

B. Baumann[1], J. Schwieger[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge lamps will in the foreseeable future be important light sources despite a growing market share of LEDs. Cost and energy efficient high frequency (300 kHz) operation is hampered by the excitation of acoustic resonances inside the arc tube, which results in low frequency (10 Hz) light flicker. Our aim is to calculate the acoustic streaming velocity field, which is related ...

3D Multiphysics Model of Thermal Flow Sensors

C. Falco[1], A. De Luca[1], S. Sarfraz[1], F. Udrea[1]
[1]University of Cambridge, Cambridge, UK

The aim of this work is to present a model capable to describe the behaviour of a thermal flow sensor under every physical aspect. A generic thermal flow sensor relates the flow properties with a variation in the temperature profile inside the device itself. Thus, it is locally heated up with a resistive element biased with an external current, surrounded by one or more temperature sensing ...

Simulation of a Polyimide Based Micromirror

A. Arevalo[1], S. Ilyas[2], D. Conchouso[1], I. G. Foulds[1,3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]Physical Sciences & Engineering (PSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[3]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

The simulation of a micromirror using polyimide as the structural material is presented. The simulation was used to verify the initial design parameters and to explore the different characteristics of the electromechanical device. For simulation simplicity the electrodes are integrated as part of the structural layer. The device thickness is 6 μm while the electrodes are 300 nm thick. For the ...

Influence of Air Gap Length and Cross-Section on Magnetic Circuit Parameters

A. Polit[1], R. Jez[1]
[1]ABB Corporate Research Center, Krakow, Poland

The air gap is one of the most crucial part of magnetic circuits, especially in high-power inductors. It significantly modifies the parameters of magnetic devices by increasing the saturation current, linearizing B-H curve of magnetic circuit and causing a decreasing in the inductance. Therefore the optimal selection of shape and dimensions of the air gap is very important from the design point ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Finite Element Modeling of Conventional and Pulsed Eddy Current Probes for CANDU® Fuel Channel Inspection

M. Luloff[1], J. Morelli[1], T. W. Krause[2]
[1]Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, Canada
[2]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada

A pulsed Eddy Current (EC) probe, using the transient response to a stepped voltage is being developed for in-reactor inspection of CANDU® fuel channels. Pulsed EC has the advantage of generating a spectrum of discrete frequencies, allowing the simultaneous collection of data from a range of depths (i.e. takes advantage of multiple skin depths) that is unachievable by conventional EC, which ...

Frequency Response Modeling of Inductive Position Sensor with Finite Element Tools

A. K. Palit[1]
[1]LE GmbH, Espelkamp, Germany

Position sensors have several applications in the automotive sector. Some of the common examples include automatic gear shifter module, seat position adjustment and accelerator-pedal position modules etc. Because of extreme weather condition, such as dust, humidity and moisture and fluctuation of temperature and wide operating temperature range. A non-contact type of inductive position sensor has ...

Quick Search