Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquet des phénomènes électriques, mécaniques, fluidiques et chimiques. utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modelling Coating Lifetime: First Practical Application for Coating Design

T. Machado Amorim [1], C. Allély[1], J. Caire[2]
[1]Arcelor Mittal Research, Maizieres-les-Metz, France
[2]ENSEEG, Grenoble, France

The corrosion at cut-made edges is significant due to the anode to cathode surface ratio in this region. The major problems are the risks of red rust appearance at the exposed steel surface, and the risks of paint delamination in case of insufficient corrosion protection. The work presented here focuses on the development of a 2D FEM model simulating a steady state corrosion situation at a cut ...

Design of Electrochemical Machining Processes by Multiphysics Simulation

M. Hackert-Oschätzchen, S. F. Jahn, and A. Schubert
Chemnitz University of Technology
Chemnitz, Germany

The principle of electrochemical machining (ECM) is the anodic dissolution of a metallic workpiece at the interface to a liquid ionic conductor under the influence of electric charge transport. This erosion principle works independently from the mechanical hardness of the workpiece and is free of mechanical forces. The design of electrochemical machining processes is still performed ...

Mathematical Modeling of a Lithium Ion Battery

R. E. White[1], and Long Cai[2]
[1]R.E. White & Associates LLC, Columbia, South Carolina, USA
[2]Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA

The existing lithium ion battery model in COMSOL’s Multiphysics  software is extended to include the thermal effects. The thermal behavior of a lithium ion battery is studied during the galvanostatic discharge process with and without a pulse. The existing lithium ion battery model in COMSOL 3.5a is extended by adding an energy balance and the temperature dependence of properties of ...

Underpaint Corrosion Modelling

T. Machado Amorim, and C. Allély
ArcelorMittal Research and Development, Automotive Products Center, Maizières les Metz, France

Underpaint corrosion is one of the most important degradation modes for galvanized steel sheets employed in automotive and building industry. Simplified systems (metal coated with thin polymer layer) under corrosion situations have been studied in the past few years and it is now widely accepted that one of the mechanisms responsible for the paint disbonding is cathodic delamination. In this ...

Optimisation of the Electrochemical Instrumentation of a Wear Simulator through Finite Element Modelling

Déforge, D.1, 2, Ponthiaux, P.2, Wenger, F.2, Lina, A.1, Ambard, A.1
1 Electricité de France (EDF) R&D, Chemistry and corrosion group, Les Renardières, Moret sur Loing cedex, France
2 Laboratory LGPM, Ecole Centrale Paris, Chatenay-Malabry cedex, France

Stainless steels are often used in nuclear power plants due to their good corrosion resistance. This good behaviour is due to an oxide film which forms on their surface and insulates them from the corrosive media. Sometimes, flow-induced vibrations can however lead to some contacts between the components, and thus to the degradation of this oxide film. The mechanical removal leads to an increase ...

Catalyst Degradation in PEM Fuel Cells - Modeling Aspects

G. Vaivars, P. Ndungu, and V. Linkov
South African Institute of Advanced Material Chemistry, University of the Western Cape, Cape Town, South Africa

In a fuel cell-powered engine, the fuel is converted to electrical energy through electrochemical reactions instead of combustion. Long term stability is required for automobile and other energy system applications. The agglomeration of catalyst particles leads to an irreversible decrease of the electrochemical performance, and there are no viable methods to compensate for this phenomenon.Complex ...

Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process

R. van Tijum
Advanced Technology Center, Philips Consumer Lifestyle, Drachten, The Netherlands

Redmer van Tijum studied Applied Physics at the University of Groningen. In 2006, he received his PhD title on ‘Interface and surface roughness of polymer metal laminates’ in the field of Material Science at the University of Groningen. After that he became research and development engineer at Philips, where he focussed his attention on the improvement of production processes mainly ...

Zinc Corrosion in a Crevice

C. Taxén, and D. Persson
Swerea-Kimab, Stockholm, Sweden

Corrosion of metals in confined zones is a big industrial problem. The electrochemistry of such localized corrosion processes is complicated by the impact of the corrosion processes on the composition of the local solution. In the present problem, local interaction with the atmosphere causes uptake of O2 and CO2 and evaporation of water from the initially dilute NaCl-solution. This model ...

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Quick Search

1 - 10 of 172 First | < Previous | Next > | Last