Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modeling, Simulation, and Optimization of the Catalytic Reactor for Methanol Oxidative Dehydrogenation

T. M. Moustafa, M. Abou-Elreesh, and S.-E. K. Fateen
Department of Chemical Engineering, Cairo University, Cairo, Egypt

A steady state model was developed to investigate the performance of the catalytic partial oxidation tubular reactor for methanol oxidative dehydrogenation. The model utilized the kinetics developed from experimental results for the main reaction and three side reactions. The partial differential equations included in the model were the mass transfer equations for the seven components and the ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Thermal Modeling of a Honeycomb Reformer Including Radiative Heat Transfer

J. Schöne[1], A. Körnig[1], W. Beckert[1]
[1]Fraunhofer IKTS, Dresden, Germany

Reformer and catalytic burners are common components in fuel cell systems, crucial for efficient preparation of fuel and exhaust gases of the fuel cell stack. We intend to show the influence of radiation to the temperature distribution inside of a reformer unit. The model consists of an axisymmetric representation of the inlet-zone and a catalytic porous zone. Fluid flow, convective and ...

Simulation of Gas/Liquid Membrane Contactor with COMSOL Multiphysics®

N. Ghasem[1], M. Al-Marzouqi[1], N. Abdul Rahim[1]
[1]UAE University, Al-Ain, United Arab Emirates

A comprehensive mathematical model that includes mass and heat transfer was developed for the transport of gas mixture of carbon dioxide and methane through hollow fiber membrane (HFM) contactor. COMSOL Multiphysics® was used in solving the set of partial, ordinary and algebraic equations. The model was based on "non-wetted mode" in which the gas mixture filled the membrane pores for ...

Multiphysics Simulations of Granular Sludge on the Optimization of Effluent Treatment Plant

S. Gunsekaran [1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Bangalore, India

Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the secondary settler of an Effluent Treatment Plant (ETP) is critical for the plant designers to determine the efficiency ...

Oxidation of Titanium Particles during Cold Gas Dynamic Spraying

A. Malachowska[1], L. Pawlowski [1], A. Ambroziak [2], M. Winnicki [2], P. Sokolowski[2]
[1]University of Limoges, Limoges, France
[2]Wroclaw University of Technology, Wroclaw, Poland

This paper studies oxide forming on titanium, during cold gas dynamic spraying with air. This is a quite new spraying method, which can be used to spray material having high affinity for oxygen. The model allows for the diffusion of oxygen through the oxide layer, reaction on the oxide-titanium interface and expansion of oxide, due to difference in molar density. It was implemented in COMSOL ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to fibrin ...

Heat Transfer Modeling of Steam Methane Reforming

E. Carcadea[1], M. Varlam[1], I. Stefanescu[1]
[1]National Research Institute for Isotopic & Cryogenic Technologies, Rm.Vâlcea, Romania

Steam methane reforming is a widely studied process because of its importance for hydrogen production. A two-dimensional membrane-reactor model was developed to investigate the steam-methane reforming reactions. The use of membrane as membrane-reactor separator offer us few advantages because it help in continuously removing the hydrogen from the reaction zone, shifting the chemical equilibrium ...

Singlet Oxygen Modeling for PDT Incorporating Local Vascular Oxygen Diffusion

T. C. Zhu[1], B. Liu[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent that kills cells during photodynamic therapy (PDT). Based on a previously-developed model, the distance-dependent reacted 1O2 can be numerically calculated using finite-element method. We improved the model to include microscopic kinetic equations of oxygen diffusion from uniformly distributed blood vessels to the adjacent tissue. The blood vessel ...

The Effect of Electrolyte Flow Slots in Tooling Electrodes on Workpiece Surface Finish in Electrochemical Machining

B. Bingham[1]
[1]Oregon State University, Corvallis, OR, USA

Electrochemical machining (ECM) uses electrolysis to precisely remove material at high rates. ECM has many advantages over conventional machining: no tool wear, no induced mechanical or thermal stresses, high removal rates virtually independent of material hardness or strength, and excellent surface finishes. However, challenges can arise during the design of the tooling electrode when ...

Quick Search