Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Perforation Effect on a Rectangular Metal Hydride Tank for Hydriding and Dehydriding Process

E. Gkanas[1][2], S. Makridis[1][2], E. Kikkinides[1], A. Stubos[2]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[2]Environmental Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR 'Demokritos', Agia Paraskevi, Athens, Greece

Hydrogen storage in a metal hydride bed, uses an intermetallic alloy that can absorb efficiently high amounts of hydrogen by chemical bonding resulting to metal hydrides. This alloy is capable of absorbing and desorbing hydrogen while maintaining its own structure. The heat, mass and momentum transfer in a metal-hydride reactor is mathematically described by energy, mass and momentum balance ...

Microwave Inactivation of Bacteria Under Dynamic Heating Conditions in Solid Media

S. Curet[1], M. Mazen Hamoud-Agha[1]
[1]GEPEA, UMR 6144, CNRS, ONIRIS, Université de Nantes, Nantes, France

In this study, COMSOL®4.2a is used to model a microwave heating process in a TE10 rectangular waveguide. The sample consists of a small cylindrical Ca-alginate gel (D = 8 mm, H = 10 mm) inoculated with bacteria Escherichia Coli K12. The sample is placed along the microwave propagation direction into the waveguide. Maxwell’s equations and heat transfer are coupled to a microbial inactivation ...

Simulation of PCM Melting Process in a Rectangular Enclosure Differentially Heated

G. Petrone[1], G. Cammarata[1]
[1]Department of Industrial Engineering, University of Catania, Catania, Italy

This study deals with a numerical investigation of the melting process of a PCM in a rectangular enclosure differentially heated. COMSOL Multiphysics is used in order to numerically solve Navier-Stokes and energy equations in the considered system. Adopting an enthalpy formulation, one single equation is used to solve transient conduction and convection heat transfer in both the solid and liquid ...

Theoretical Modeling of a Thermophotovoltaic System

Mattarolo, G., Bard, J.
ISET, Institut für Solare Energieversorgungstechnik, Kassel

Thermophotovoltaic (TPV) is an emerging technology based on the direct conversion of thermal radiation coming from a heat source into electricity by using photovoltaic (PV) cells. The first target for the TPV research is to break the threshold of 10% of efficiency, which would allow to start the commercialization of such technology in different applications. Defining and simulating a ...

Finite Element Approach for Optimizing the Cooling of the Metallic Bipolar plates for Fuel Cell Applications

E. Firat[1,2], C. Siegel[1,2], L. Kühnemann[1,2], P. Beckhaus[1], and A. Heinzel[1,2]
[1]Zentrum für Brennstoffzellentechnik (ZBT) GmbH, Duisburg, Germany
[2]University of Duisburg Essen, Duisburg, Germany

Metallic bipolar plates promise several advantages for fuel cell applications. On the other hand, cooling of these plates is a critical task regarding design optimization. The high thermal conductivity of the material and the complex geometry of these plates affect directly the cooling performance. To analyze this phenomenon, a 3D model is set-up and solved using a FEM (finite element method) ...

Heat and Mass Transfer in a Gypsum Board Subjected to Fire

B. Weber
Empa
Swiss Federal Laboratories for Materials Science and Technology
Duebendorf, Switzerland

Heat and mass transfer through a gypsum board exposed to fire is simulated and compared to experimental data. The gypsum board is modeled as a porous medium with moist air in the pores. A dehydration front develops at the fire side and travels through the board, consuming energy and releasing water vapor. The vapor migrates through the porous medium by convection and diffusion, and condenses in ...

Coupled Electric-Thermal-Fluid Analysis of High Voltage Bushing

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

Modern power transmission systems are in general designed to operate at high voltages in order to reduce resistive losses generated by high currents. This, however, tends to increase the risk for dielectric breakdown or flashovers if the equipment is not properly designed to withstand the stress. The present work illustrates how multiphysics simulations can be used to analyze and predict the ...

Stirling Engine Simulation: Non-isothermal Flow / Structure Interaction

N. Martaj1, P. Rochelle1, L. Grosu1, R. Bennacer2, and S. Savarese3
1LEEE, Université Paris X, Ville d'Avray, France
2Laboratoire Environnement, Energétique, Valorisation, Matériaux (LEEVAM), Université de Cergy-Pontoise, Neuville-Sur-Oise, France
3COMSOL France, Paris, France

The reciprocating thermal engine of Stirling type, with its varied external heat sources and efficiency improving regenerator, is an alternate solution to be taken into account for efficient power applications of renewable energies. Work and efficiency of this machine is strongly dependent on geometrical and physical parameters such as dimensions, heat transfer coefficients, heat source ...

µHeater on a Buckled Cantilever Plate for Gas Sensor Applications

A. Arpys Arevalo Carreno[1], E. Byas[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

In semiconductor gas sensors, the base of the gas detection is the interaction of the gaseous species at the surface of the semiconducting sensitive material. Since the chemical reactions at the surface of the sensor material are functions of temperature. We simulate our µHeater design on a Buckled Cantilever Plate (BCP). Such structure allows the sensor to be suspended for thermal insulation. ...

Optimization of Thermal Properties Identification of Complex Thin Films Using MATLAB® and COMSOL Multiphysics

N. Semmar[1], B. Wane[1]
[1]GREMI, UMR7344, CNRS-University of Orleans, Orléans Cedex 2, France

The importance of laser processing and thermal properties investigation of bulk materials and thin layers is still increasing. For thermal properties investigation many experimental systems were developed based on the photothermal effect. One of typical ways is to induce a rapid surface temperature increase is to use a pulsed laser beam, create a simplified model of this interaction, and compare ...

Quick Search