Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Detection of Magnetic Particles by Magnetoresistive Sensors

A. Weddemann[1], A. Auge[1], F. Wittbracht[1], C. Albon[1], and A. Hütten[1]
[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In this work, we demonstrate the implementation of the micromagnetic equations for the description of ferromagnetic thin films in COMSOL Multiphysics®. We apply our model to magnetoresistive sensors consisting of several soft ferromagnetic layers and their response to magnetic particles. The magnetization dynamic of the particles needs to be described in a similar manner, though due to size ...

Shape, Convection and Convergence

R. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically manifested by instability in the calculation and a failure of the model to converge. This paper presents a new approach ...

Nanofiltration Modeling Based on the Extended Nernst-Planck Equation under Different Physical Modes

J. Gozálvez-Zafrilla, and A. Santafé-Moros
Department of Chemical and Nuclear Engineering, Universidad Politécnica de Valencia, Valencia, Spain

The most successful nanofiltration models are those based on the combination of the Extended Nernst-Planck equation with the Donnan steric equilibrium. These models have been typically solved by using iterative procedures based on the Runge-Kutta method. Yet, such procedures present convergence problems in some cases. In this paper, we present an implementation of the original Donnan ...

COMSOL API Based Toolbox for the Mixed-Level Modeling of Squeeze-Film Damping in MEMS: Simulation and Experimental Validation

M. Niessner[1], G. Schrag[1], J. Iannacci[2], and G. Wachutka[1]
[1]Institute for Physics of Electrotechnology, Munich University of Technology, Munich, Germany
[2]MEMS Research Unit, Fondazione Bruno Kessler, Povo di Trento, Italy

We present an easy-to-use toolbox for the automated generation of reduced-order mixed-level models for the evaluation of squeeze-film damping in microelectromechanical systems. The toolbox is programmed in JAVA and heavily exploits the functionality provided by the COMSOL API. The results obtained from mixed-level model simulation performed in COMSOL Multiphysics agree very well with ...

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University
China

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University
Japan

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Optimized Cantilever-to-Anchor Configurations of Buckled Cantilever Plate Structures for Transducer Applications

A. Arpys Arevalo Carreno[1], D. Conchouso Gonzalez[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Mecca, Kingdom of Saudi Arabia

The mechanical simulation and analysis of the cantilever-to-anchor configuration for an out-of-plane structure used in transducer applications is reported. The polymer-based Buckled Cantilever Plate “BCP” structure, gives the ability to orient an active device from a horizontal to a vertical position, once assembled. In this paper we compare four different cantilever-to-anchor ...

Designing and Simulating the Performance Analysis of Piezoresistive Fluid Flow Pressure Sensor

K. PraveenKumar[1], P. Suresh[1], K. Subash[1], M. Alagappan[1], A. Gupta[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India.

In this work, we present the performance analysis of novel micro machined Piezoresistive fluid flow pressure sensor using COMSOL Multiphysics. The principle of the sensing mechanism is based on the deflection of four sensing layers embedded on a thin membrane. The fluid passes through the layer causes the deflection of the sensing layer which measures the pressure of the fluid. The following ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Mechanical model of electrostatically actuated shunt switch

Eriksson, A.
Uppsala Universitet

A component used in RF-MEMS systems is the electrostatically actuated shunt switch. We show how this type of switch can be simulated using a simple mechanical FEMLAB model where electrostatic forces are modelled by a pressure load. The static as well as dynamic properties of the switch are analysed, e.g. static pull in and pull out voltages and displacements, dynamic switch up and down times ...

Quick Search