Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modelling of SiC Chemical Vapour Infiltration Process Assisted by Microwave Heating

G. Maizza[1] and M. Longhin[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The excessive presence of residual SiC matrix inter-fiber pores is often the main cause for the very poor mechanical strength and toughness of SiC/SiC composites manufactured by CVI (Chemical Vapour Infiltration) process. This work presents a micro/macro Microwaveassisted Chemical Vapour Infiltration (MW-CVI) model as a strategy to attack the problems above. The proposed model couples a ...

A microfluidic assay design for real-time bacterial chemotaxis studies

Koser, H., Kaya, T., Mao, L.
Department of Electrical Engineering, Yale University, New Haven, CT

We have developed a novel, multilayered microfluidic chamber that enables the realtime quantitative study of chemotaxis on virtually all types of motile cells. In this paper, we present a FEMLAB modeling study of the 3D chamber design, including a consideration of each device iteration that successively led to the eventual design. The final chamber design is able to create and maintain an ...

Expanding Your Materials Horizons

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc. (COMSOL Certified Consultant), Bloomfield Hills, Michigan, USA

Materials and their related properties are intrinsically fundamental to the creation, development and solution of viable exploratory models when using numerical analysis software. In many cases, simply determining the location, availability and relative accuracy of the necessary material parameters for the physical behavior of even commonly employed design materials can be very difficult and time ...

Simulation of Magnetic Beads in on-chip Structures

A. Weddemann, A. Hütten, S. Herth, and M. Schilling
Universität Bielefeld, Fakultät für Physik, Bielefeld

In this work, a system for magnetic and hydrodynamic manipulation of magnetic beads is modelled. A geometry is introduced to assure a good separation behaviour with respect to the magnetic moment of the particles. Different separation mechanisms will be discussed and an estimation of the minimal difference of separable magnetic moments will be given. Further it will be shown, that the ...

Visions Realized: Using COMSOL Multiphysics to Prepare Students for the Modern World

Bruce A. Finlayson
University of Washington
Washington, USA

This talk demonstrates the success in teaching chemical engineering undergraduates to use COMSOL Multiphysics (FEMLAB) to solve realistic problems in a project format. Undergraduates have been creative and solved problems much more difficult than those in their textbooks, thus gaining a deeper understanding of transport processes. Illustrations are also given how they check to see they’ve ...

Perspectives of Thermo-electro-mechanical Micro Actuators for Micro Switch Applications: Design and Simulation

M. Matmat, M. Al Ahmad, and J. Y. Fourniols
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), Toulouse, France

In this work, thermo-mechanical simulations employing a 3D finite element analysis (FEA) of a current driven V-shaped actuator is presented. The structure's hot arms consist of polysilicon, which was used as the active material for deflection due to the Joule effect.COMSOL Multiphysics with stationary and parametric solvers was used to calculate the resulting deflection when current is applied. ...

Design and Modeling of a Micro-active Suspension

T. Verdot, and M. Collet
Dept. of Applied Mechanics, FEMTO-ST Institute, Besançon, France

Nowadays, lightweight materials are widely used to reduce weight and increase available space in moving structures such as cars or aircraft. However, they constitute an intense vibrating environment that can strongly affect the operation of embedded micro-transducers such as frequency generators or inertial sensors. To alleviate this problem, we propose the concept of a Micro-Active Suspension ...

Magnetic Ratchet

A. Auge, F. Wittbracht, A. Weddemann, and A. Hütten
Department of Physics, University of Bielefeld, Germany

Transport phenomena in spatially periodic magnetic systems, in particular the directed transport of magnetic beads in a so called magnetic ratchet (Brownian motor) are considered. Simulations are carried out to test and optimize this system, where the Smoluchowski equation with flux terms for the magnetic and gravitational force is used. Furthermore, experiments are carried out to verify the ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...

Multiphysics Modeling of Nanoparticle Detection - Current Status and Collaboration Sought

D. Krizaj[1], I. Iskra[2], Z. Topcagic[1], and M. Remskar[2]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
[2]Institut Jozef Stefan, Ljubljana, Slovenia

We are developing nanoparticle detector for airborn particles. The detection principle is based on condensation of nanoparticles forming micron sized water droplets and detection of the droplets by a capacitive type nanodetector. We have successfully performed some experimental evaluations of the detection principle and are in the stage of optimization of several parts of the system. As shown ...

Quick Search