Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

A Model of Electric Field Assisted Capillarity for the Fabrication of Hollow Microstructures

C. Tonry[1], M. K. Patel[1], C. Bailey[1], M. P.Y. Desmuliez[2], W. Yu[3]
[1]Computational Mechanics and Reliability Group (CMRG), School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
[2]Microsystems Engineering Centre (MISCEC, School of Engineering & Physical Sciences, Heriot Watt University, Earl Mountbatten Building, Edinburgh, United Kingdom
[3]State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, China

Electric Field Assisted Capillarity (EFAC) is a novel technique for the fabrication of hollow polymer microstructures. It has advantages over current methods as it is a single step process. Hollow microstructures have many uses in industry from microchannels and microcapsules in BioMEMS to fibre-optical waveguides. It makes use of the dielectric properties of polymers combined with a heavily ...

COMSOL Multiphysics Modeling of Rotational Resonant MEMS Sensors with Electrothermal Drive

S. Nelson[1], and M. Guvench[1]
[1]University of Southern Maine, Gorham, Maine, USA

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane rotational resonating MEMS sensor. The resonating sensor disk is driven by thermal expansion and contraction of the support tethers due to AC joule heating. The resonant frequency is sensed by stationary contacts. For cost reduction, the relatively simple, low cost SOIMUMPS fabrication process is ...

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a number of interesting flow phenomena in micro-domains. For an average potential drop of about 86 kV/m in the ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

Zone sculpting using partitioned electrokinetic injections

Narovlyansky, M.1, Squires, T.M.2, Whitesides, G.M.1
1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, U.S.A.
2 Departments of Physics and Applied Mathematics, Caltech, Pasadena, CA

In electrokinetic separations, the narrower and more homogeneous the initial sample plug, the higher the ultimate resolution of the separation. Here we describe a general and versatile method to sculpt low-dispersion, high-fidelity sample zones in microfluidic devices for high resolution electrokinetic separations. In a simple channel intersections microfabricated partitions act to reduce each ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

Micro Cooling of SQUID Sensor

B. Ottosson[1], Y. Jouahri[2], C. Rusu[1], and P. Enoksson[2]
[1]Imego AB, Gothenburg, Sweden
[2]Chalmers University of Technology, Gothenburg, Sweden

The objective of this work has been to realize a feasibility study of a cooling device for a SQUID sensor using liquid nitrogen flowing through micro channels. The design consists of an epoxy cylindrical vacuum vessel skewed by a silicon microchannel heat sink. The SQUID sensor is situated directly on top of the microchannel heat sink. The device is used at room temperature and should be able to ...

Numerical Analysis of the Impact of Geometric Shape Patterns on the Performance of Miniaturized Chromatography Systems

R. Winz[1], E. von Lieres[2], and W. Wiechert[1]
[1]Department of Simulation, University of Siegen, Siegen, Germany
[2]Institute of Biotechnology, Research Centre Jülich, Siegen, Germany

We have implemented a two dimensional chromatography model for the analysis and optimization of structured micro pillar arrays. Dynamic surface interaction of solved molecules is taken into account by the kinetic Langmuir model. Variations of the pillar array geometry lead to deviations in the outlet concentration profiles. These deviations cannot be described by the one dimensional models that ...

Investigating the Use of a Piezoelectric Actuator for the Appendages of a Microrobot

J. Clark, and J. Clark
Purdue University, West Lafayette, IN, USA

We investigate the use of a piezoelectric actuator for the appendages of a microrobot. Possible uses may include micro assembly, mobile surveillance, etc. What is different about this microrobot is that it uses 2 degrees of freedom, low powered piezoelectric flexures, while attempting to mimic the maneuverability of an ant-like insect. In the paper, we use COMSOL to characterize this type of ...

Effect of Mass Adsorption on a Resonant NEMS

J. J. Ruz Martinez
Instituto de Microelectronica de Madrid
Tres Cantos
Madrid, Spain

The motion of a resonant NEMS has been widely studied for many different applications such as structural mechanics in engineering, ultra sensitive mass spectrometers or the well known Atomic Force Microscope. The study of the eigenfrequencies of such structures is very important, and nowadays there are good theoretical methods to accurately predict such eigenfrequencies. When a little mass is ...

Quick Search