Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode potential. ...

Modeling of Different Shaped Micro-Cantilevers Used as Chemical Sensors

G. Louarn, M. Collet, and S. Cuenot
Institut des Matériaux Jean Rouxel, Nantes

In this work, we present the modeling of V-shaped silicon micro-cantilevers. The sensitivity of different V-shaped silicon cantilevers is estimated, as a function of the geometrical dimensions of the cantilever.

Electric Field Distributions and Energy Transfer in Waveguide-Based Axial-Type Microwave Plasma Source

H. Nowakowska[1], M. Jasínski[1], and J. Mizeraczyk[1,2]
[1]The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
[2]Dept. of Marine Electronics, Gdynia Maritime University, Gdynia, Poland

In this paper, we examine changes of the electric field distributions in waveguide-based axial-type microwave plasma source (MPS) during tuning procedure. The distributions strongly depend on position of the movable short, so does the wave reflection coefficient of the incident wave. A method of determining tuning characteristics of the MPS consisting in treating the MPS as a two-port network, ...

Application of Multiphysics in the Simulation of Metallurgical Processes

M. Ek, and D. Sichen
Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden

In the steelmaking processes, the stirring of the metal bath by argon (or nitrogen) injection is a widely used method to achieve chemical or thermal homogeneity. Computational fluid dynamics can be used as a very powerful tool to gain an insight into the mass transfer and heat transfer in liquid steel. In this paper, the flow behaviors in two different steelmaking reactors were simulated using ...

Chip Drop After Silver Sintering Process

M.H. Poech[1], M. Weiß[1], and K. Gruber[1]

[1]Fraunhofer Institute for Silicon Technology, Itzehoe, Germany

Since a couple of years, sintering becomes more and more important for power electronics. To press a semiconductor under high temperature in silver paste on a substrate promises benefits for durability. Tests with semiconductors of different thickness expose some problems. After the cool down, some of them fall slightly from the substrate. Stress in the boundary layer, caused by different ...

Thermo-Mechanically Coupled Analysis of Shape Memory ActuatorsNC

Q. Li, and S. Seelecke
Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

This presentation deals with a Thermomechanical coupled analysis of a Shape Memory wire actuator. The outline for the Shape Memory Alloy model is:Motivation - Multiple scales and materialsMicro-scale mechanismsMeso-scale lattice elementsMacro-scale elementFree energy conceptUnified approach to various active materials(SMA, PZT, FSMA, etc.)Mathematical modelStatistical thermodynamicsThermally ...

Magnetoacoustic Tomography and COMSOL Multiphysics

W. He
Chinese Academy of Sciences, Institute of Electrical Engineering, Beijing, China

Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging electrical impedance properties, which integrates classic electrical impedance tomography and ultrasonic technique. It could provide an explicitly reconstructed electrical impedance distribution with high spatial resolution and contrast, eliminating the shielding effects of insulating tissues. ...

Microfluidic Design of Neuron-MOSFET based on ISFET

A. Jain[1], and A. Garg[2]
[1]BITS Pilani, Goa, India
[2]Bhartiya Vidyapeeth College, New Delhi, India

In this paper we suggest a device which combines the operation of a neuron-MOS and an ISFET. An ISFET is an ion-sensitive field effect transistor used to measure ion concentrations in a solution; when the ion concentration changes, the current through the transistor changes accordingly. A voltage between substrate and the oxide surfaces arises due to an ions sheath. It contains a conventional ...

Applying Grain Continuum Models to Stress Induced Grain Evolution in Next Generation Integrated Circuit Interconnects

D.N. Bentz, M. Bloomfield, J-Q. Lu, R.J. Gutmann, and T.S. Cale
Focus Center—New York, Rensselaer: Interconnects for Hyperintegration

We discuss the use of 3D grain continuum modeling to study grain boundary migration driven by differences in strain energy density. COMSOL Multiphysics is used to compute stresses and strain energy densities in polycrystalline structures caused by temperature changes. The grain boundary speeds are computed using a simple model that relates them to grain boundary mobility and differences ...

Quick Search