Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh to accommodate the moving boundary. The electromagnetics model consist of four multiphysics models, two ...

Multiphysic FEMLAB modelisation to evaluate mid-infrared photonic detector performances

Cuminal, Y.1, Christol, P.2, Rodriguez, J.B2, Joullié, A.2
1 Laboratoire des Sciences des Matériaux et d’Automatique (LASMEA), Université Clermont II, UMR CNRS 6602, Aubiére, France
2 Centre d’Electronique et de Micro-optoélectronique de Montpellier (CEM2), Université de Montpellier-II, UMR CNRS 5507, Montpellier, France

Infrared photonic detectors operating in the mid infrared region find applications in pollution monitoring, high-speed infrared imaging systems and free space telecommunications. There is a need for new uncooled high performance detector systems and antimonide-based (Sb-based) semiconductor quantum structures could be an alternative of the well-established technologies. The main objective of ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University
Japan

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Optimized Design of Shielded Microstrip Lines using Adaptive Finite Element Method

P. Kakria[1], A. Marwaha[1], and M. S. Manna[2]
[1]Electronics & Communication department, SLIET Longowal, Distt. Sangrur, Punjab, India.
[2]Electrical & Instrumentation department, SLIET Longowal, Distt. Sangrur, Punjab, India.

In this paper, the attempt has been made to design and analyze single strip shielded Microstrip line with capacitive coupling. The main objective is to compute the capacitance per unit length of shielded Microstrip line using Finite Element technique. The computational and simulation work has been carried out with the help of FEM based COMSOL Multiphysics software. The shielded Microstrip ...

Electromagnetic Parameters Extraction for Integrated-Circuit Interconnects for Open Three Conductors with Two Levels Systems

S.M. Musa[1], M.N.O. Sadiku[1], J.D. Oliver[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using the finite element method (FEM) ...

Modeling Effects of Structural Distortions on Air-Core Photonic Band-Gap Fibers

M. J. Li, J. A. West, and K. W. Koch
Science and Technology Division, Corning Inc., Corning, NY, USA

The cross-section of a real air-core photonic band-gap fiber with structural distortions is analyzed using a vectorial finite element method and compared with an ideal structure.It is found that the properties of aircore photonic band-gap fibers are extremely sensitive to changes of the structural parameters. Structural distortions in real fibers have significant impact on fiber properties such ...

Implementation of an 2D electro-thermal model for power semiconductor devices simulation: application on gallium nitride

Benbakhti, B., Rousseau, M., De Jeager, J.C.
IEMN-USTL

Generally, the power dissipation in a semiconductor device generates self-heating effect. This effect is very significant in power applications using Gallium Nitride. Taking into account heating effects enables us to understand physical phenomena observed in experiments like the low saturation velocity. In this paper, numerical simulations were carried out to study the influence of thermal ...

Theoretical Study Of Porous Silicon Waveguides And Their Applicability For Vapour Sensing

T. Hutter[1], N. Bamiedakis[2], and S. Elliott[1]
[1]Department of Chemistry, University of Cambridge, UK
[2]Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, UK

The finite-element method (FEM) (COMSOL RF Module) has been employed for modal analyses of porous silicon (PSi) waveguides composed of a guiding layer of low porosity (high refractive index) on a cladding layer with higher porosity (lower refractive index). These can be made by switching the current density from a lower to a higher value during the electrochemical etching process. The ...

Zero Dispersion Modeling in As2S3-Based Microstructured Fibers

P. Gagnon[1], H. Manouzi[1], M. El Amraoui[1], Y. Messaddeq[1]
[1]Laval University, Quebec City, QC, Canada

An important step in designing a microstructured optical fiber is the computation and management of its dispersion curve. It is well-known that computing chromatic dispersion can be done analytically for certain geometries (e.g. step-index fibers), but no such analytical methods is known in the realm of microstructured optical fibers. Figure 1, Figure 2, and Figure 3 illustrate cross-sections of ...

Modeling of III-Nitride Quantum Wells with Arbitrary Crystallographic Orientation for Nitride-Based Photonics

M. Kisin, R. Brown, and H. El-Ghoroury

Ostendo Technologies, Inc., Carlsbad, CA, USA

A program for self-consistent modeling of electron-hole energy spectrum and space-charge distribution in III-nitride based quantum well (QW) structures has been developed. The model takes into consideration full 6-band description of the valence band states, nonparabolicity of the electron spectrum, quantum confinement of electrons and holes, strain induced modifications of the band structure, ...

Quick Search