Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Consultez les proceedings de la Conference COMSOL 2020

Optics, Photonics and Semiconductorsx

Genetic Algorithm for Geometry Optimization of Optical Antennas

R. Diaz de Leon [1], G. Gonzalez [1], A. G. Rodriguez [1], E. Flores [2], F. J. Gonzalez [1],
[1] Universidad Autonoma de SLP, San Luis Potosi, S.L.P., Mexico
[2] Instituto Tecnologico de SLP, San Luis Potosi, S.L.P., Mexico

A genetic algorithm was programmed in MATLAB® software and linked to the COMSOL Multiphysics® software with the COMSOL LiveLink™ for MATLAB® to optimize the geometry of an optical antenna (nanoantenna). The proposed computational model demonstrated that nanoantenna geometries does not ... En savoir plus

Spectroscopic Modeling of Photoelectrochemical Water Splitting

P. Cendula [1], J. O. Schumacher [1],
[1] Institute of Computational Physics, Zurich University of Applied Sciences, Winterthur, Switzerland

A photoelectrochemical (PEC) cell uses solar energy to split water to hydrogen and oxygen in single integrated device. Electrochemical impedance spectroscopy is a suitable tool to characterize recombination and reaction mechanisms in PEC cell. Full numerical drift-diffusion calculations ... En savoir plus

Investigation of Ablation of a Copper Surface Caused by 220 Nanosecond Laser Pulse

M. Dillmann [1], B. Braun [1], M. Kottcke [1],
[1] Technische Hochschule Georg-Simon-Ohm, Nuernberg, Germany

This work investigates the ablation of a copper surface caused by the irradiation of a 220 ns laser pulse. Our focus is on the heat transport within the copper and takes the proceeding vaporization of surface substance into account. Our model ignores plasma dynamics and simulates the ... En savoir plus

Raytracing of Spherical Aberration in COMSOL Multiphysics® Compared with Third Order Theory

H. van Halewijn [1],
[1] University of Applied Physics, Eindhoven, Netherlands

The Ray Tracing Module in COMSOL Multiphysics® is used to setup and simulate a lens and compare the longitudinal spherical aberration (LSA) with the third order theory in optics. Some Seidel coefficients will be investigated and the geometry or solver settings will be discussed. Also a ... En savoir plus

Optoelectronic Transducer with an Optical Fiber Transmission Used for Current Measurement

J. Golebiowski [1],
[1] Dept. of Semiconductor and Optoelectronics Devices, Lodz University of Technology, Lodz, Poland

The transducer's construction used for current measurement in medium voltage power lines for current values kA is shown. The transducer involves magnetic circuit with a gap in which a MEMS structure with a movable cantilever is placed. The beam is made of silicon with a NiFe layer. The ... En savoir plus

Enhancing Fluorescence of Diamond Color Centers near Gold Nanorods via Geometry Optimization

M. Csete [1], A. Szenes [1], L. Zs. Szabó [1], G. Szabó [1], T. Csendes [2], B. Bánhelyi [2],
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

Detecting light emitted by fluorescent molecules with resolution down to single photon is an important problem in various fields of sciences and applications, such as solid-state physics, quantum information processing and medicine. The detection probability can be improved via ... En savoir plus

Model of Biosensor based on Organic Electrochemical Transistors

A. Shirinskaya [1], Y. Bonnassieux [1], G. Horowitz [1],
[1] LPICM, CNRS, Ecole Polytechnique, Université Paris Saclay, Palaiseau, France

One of the most promising categories of semiconductor-based sensors is organic electrochemical transistor (OECT), which consists of three electrodes (Source, Drain and Gate) and two active layers: electrolyte and conductive polymer. Despite the fact that OECT attracts a lot of attention ... En savoir plus

Near-Field FEM Simulations: A Vital Tool for Studying Silver-Based Plasmonic Systems

R. Asapu [1], S. W. Verbruggen [2], N. Claes [3], S. Bals [3], S. Denys [1], S. Lenaerts [1],
[1] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium
[2] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium; Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
[3] Department of Physics, EMAT Research Group, University of Antwerp, Antwerp, Belgium

Silver nanoparticles are valuable in the field of plasmonics since silver has a higher field enhancement factor compared to other metals that possess plasmonic properties. The plasmonic properties of silver nanoparticles can be finely tuned to the incident light wavelength through their ... En savoir plus

Bipolar Charge Transport Model of Insulators for HVDC Applications

Y.-i. Joe [1]
[1] LS Cable and System, South Korea

Charge transport behavior must be considered in developing HVDC design. In microscopic level, the space charge and conduction mechanisms are related with energy band‐gap and shallow/deep trap distribution and these come from chemical defects, physical disorder and impurities or by ... En savoir plus

Silicon Nanopillar Array for Light Emission Enhancement in Color-converting LED

P. Ding (丁佩) [1],
[1] Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, Henan, China

Plasmonic metallic nanostructures have been demonstrated an effective way to enhance the light emission efficiency in LEDs. Here, we propose a design of white LEDs that combining dielectric silicon nanopillar array in the color-converting layer. By investigating theoretically the guided ... En savoir plus